Book Name:	Current Research Progress in Physical Science
Manuscript Number:	Ms_BPR_4090
Title of the Manuscript:	EXPLORING THE CONFINEMENT REGIME IN SPHERICAL ZnO, CdS, and CdSe COLLOIDAL (STAND ALONE) QUANT
Type of the Article	Book chapter

PART 1: Comments

	Reviewer's comment	Author's Feedback part in the manuscri his/her feedback he
Please write a few sentences regarding the importance of this manuscript for the scientific community. A minimumof 3-4 sentences may be required for this part.	Thismanuscriptholdssignificantimportance for thescientificcommunity asitprovidesadetailed theoreticaland computational analysis of quantum confinement regimes in ZnO, CdS, and CdSe quantum dots. By elucidatingthe size-dependentopticaland electronicproperties, itoffers valuableinsights into thedesign and optimization of quantum dotsfor advanced optoelectronicapplicationssuch aslight-emitting diodesand transistors.Furthermore, the work establishes clear distinctions between weak, intermediate, and strong confinement regimes, serving as a crucial reference for both researchers and engineers working on nanomaterials. Its findings contribute to the broaderunderstandingofmaterial-dependentquantumbehaviors, pavingthewayforinnovationsin nanotechnologyandsemiconductor-baseddevices.	
Is the title of the article suitable? (If not please suggest an alternative title)	Thetitle, "ExploringtheConfinementRegimeinSphericalZnO,CdS,andCdSeColloidal(StandAlone) Quantum Dots," is informative but could be refined for better clarity and appeal. SuggestedRevisions: "UnderstandingQuantumConfinementRegimesinZnO,CdS,andCdSeColloidalQuantumDots" "TheoreticalInsightsintoConfinementRegimesofZnO,CdS,andCdSeColloidalQuantumDots" "ExploringSize-DependentConfinementEffectsinZnO,CdS,andCdSeQuantumDots"	
Is the abstract of the article comprehensive? Do you suggest the addition (or deletion) of some points in this section? Please write your suggestions here.	 Theabstractiscomprehensivebutcouldbenefitfromafewadjustmentstoenhanceclarityandimpact.ltprovid es a good overview of the focus (quantum confinement effects), materials studied (ZnO, CdS, CdSe), and potential applications (field-effect transistors and optoelectronics). However, the following suggestions can improve it further: SuggestionsforImprovement: Include Specific Results: Add key findings, such as numerical ranges for confinement regimes or specific insights about the transitions between weak, intermediate, and strong confinement. HighlightNovelty:Brieflymentionwhatdistinguishesthisstudyfrompreviouswork. Remove Redundancy: Phrases like "Quantum confinement effects dictate optical and electronic behaviors" could be condensed to avoid repetition. Add Methodology Details: Mention that the study involves computational simulations and theoretical analysis to add depth. 	
Is the manuscript scientifically, correct? Please write here.	 The manuscript is scientifically sound and provides detailed explanations of quantum confinement phenomena. However: Mathematical Derivations: The equations and theoretical models appear correct but should be cross-verified for consistent variable definitions. ResultsValidity: Thenumerical results(e.g., confinement ranges and energies) align well with established theoretical principles but could benefit from experimental comparisons for validation. 	

UM DOTS

ck(Please correct the manuscript and highlight that cript. It is mandatory that authors should write ere)

Are the references sufficient and recent? If you	1. Sufficiency: The manuscript includes a strong foundation of references (both theoretical	
have suggestions of additional references, please	and applied), with citations spanning from foundational works to recent studies.	
mention them in the review form.	2. Recency: While there are a few recent citations (2020–	
:	2024), adding more contemporary references, especially for ZnO, CdS, and CdSe applications,	
	would enhance the manuscript's relevance.	
	Diversity: Include additional papers from leading journals in nanotechnology or optoelectronics to broaden	
	the context.	

Is the language/English quality of the article suitable for scholarly communications? Optional/Generalcomments	 SuitabilityforScholarlyCommunication:Thelanguageismostlyclearandtechnical,suitabl efor academic audiences. However: MinorGrammarlssues:Instanceslike"Quantumdotshavegarneredsignificantattentiond ueto its" (should be "their") need correction. SentenceStructure:Somesentencesarelongandcouldbesimplifiedforbetterreadability. Suggestions: Proofreadtoaddressminorerrors(e.g., "Quantumdotss" shouldbe"Quantumdots"). Useconsistentterminology(e.g., "Bohrradius"vs. "excitonBohrradius"). 	
	 ClarityofObjectives: Theobjectiveofexploringquantumconfinementregimesisclear, but the introduction could benefit from a sharper problem statement. ConsistencyinTerminology: Termslike" confinementenergy, ""Bohrradius, "and "quantumdots" are used throughout, but agloss ary or consistent explanation for non-experts would help 	
	 readability. 3. Figures:Figures1and2arehelpfulbutlackdescriptivecaptions.Includingcontextfor each figure will enhance their utility. 4. Mathematical Representations:Equationsarepresentedcorrectly,butsomevariables lackdetailedexplanation,suchasme*m^*_eme* ander\epsilon_rer.Providingakeyor 	
	 legend would improve understanding. 5. References: Citationsareadequate, but recent works (2020–2024) should be expanded for a more up-to-date perspective. 6. Abstract: The abstract effectively summarizes the work but could highlight specific 	
	 numerical results or key findings for better impact. 7. Conclusion: Itisconcisebutcouldbetterdiscussthepracticalimplicationsoffindingsin device optimization. 8. Language: Minorgrammaticalissues, suchas "Quantumdotshavegarneredsignificant" 	
	 attention due to its" (should be "their"). 9. FiguresandGraphs: Addingdiagramsforexperimentalsetuporcomputational modeling would improve comprehension. 10. LiteratureContext: Theintroductiondiscusses the state of the art but could elaborate on how 	
	this work builds on or diverges from prior studies. DetailedSectionComments Introduction 11 BackgroundContext:DiscussapplicationsofZnQ_CdS andCdSeipmoredetail	
	11. Date ground context. Discussapplications of 210, outs, and outsentinored etail, beyond general optoelectronics, e.g., specific device examples. 12. TerminologyIntroduction: Theterm "quantumdots" is well-introduced, but "quantum confinement regimes" needs more context upfront.	

13. Motivation: The practical motivation for studying the seconfinement regimes could be better emphasized.
14. Structure :Mentioningthestructureofthepaper(e.g.,"Thispaperisorganizedas follows") would improve navigation.
Methods
15. ComputationalDetails :Thecomputationalapproachisnotwell-detailed.Specify software, computational methods, and assumptions.
16. EquationDerivation:Equation(1)iscriticalbutlacksanexplanationofitsphysical meaning.
17. ParametersUsed :Thematerialparameterslistedarethoroughbutwouldbenefitfroma tabular presentation for easier reading.
18. ExperimentalTechniques:Whilecolloidalsynthesisismentioned,noexperimental validation or replication methodology is described.
Results
19. DataPresentation:Theresultsarecomprehensivebutdense.Summarizingrangesof confinement regimes in a table would improve clarity.
20. Graphs :Addingplotstovisualizeconfinementenergyvs.sizewouldsignificantly enhance understanding.
21. QuantitativeDiscussion:ResultsforZnO,CdS,andCdSearementioned,buttheir physical implications need more discussion.
22. Comparisons :Comparisonswithpreviousliteratureareminimal.Highlightsimilarities or differences explicitly.
Discussion
23. PhysicalInterpretation :Discusswhycertainmaterialsexhibitstrongerconfinement than others in more detail.
24. Applications: Connectfindingsexplicitly to applications like transistors or lasers.
25. WeakPoints:Addresspotentiallimitations,suchasthevalidityofassumptionsin theoretical models.
26. FutureWork:Suggestmorespecificdirectionsforfurtherresearch, such astesting with other semiconductors.
Conclusion
27. ImpactStatement: Elaborateonhowunderstandingconfinementregimesadvances quantum dot technology.

28. Generalization: Discuss whether findings are applicable to other types of quantum dots.
FiguresandCaptions
29. Figure1: Add acaption that explains the significance of the size-sorted quantum dots.
30. Figure 2: Caption should explain what energy levels represent and why size affects them.
StylisticComments
31. SentenceStructure:Somesentencesaretoolong,makingthemdifficulttofollow.Break them up for clarity.
32. Grammar: Fixminorgrammaticalerrorsthroughoutthemanuscript.
33. Formatting :Equationsshouldhaveconsistentformatting,withclearnumberingand references in the text.
SpecificCommentsonEquations
34. Equation(1): Clarify whether RRR is radius or diameter for consistency.
35. Equation(10):ExplainthephysicalmeaningoftheequivalencebetweenBohrradius and de Broglie wavelength.
36. Equation(12): Define the constant used in the equation explicitly.
ReferenceComments
37. KeySources: Addrecentreviewsonquantumdotsfrom 2020 onwards.
38. CitationStyle: Ensureconsistencyincitationformatting(e.g., authorinitialsplacement).
39. SpecificGaps :Missingcitationsforpracticalapplicationsofquantumdotsintransistors. FormattingComments
1. SectionTitles:Standardizecapitalization(e.g., "Results"vs. "ResultsandDiscussions").
2. TextAlignment: Ensure consistentalignment of text, especially equations and lists.
3. Tables :Addingatablesummarizingconfinementparametersforallmaterialswould enhance readability.
4. BulletPoints :Usebulletsornumberedlistsinsectionslike"DeterminantsofQuantum Confinement."
RecommendationsforImprovement
 IncludeExperimentalValidation: If possible, complements imulations with experimental data.

6. Simplify: Remove overly technical jargon where possible, or include definitions.
7. SupplementaryMaterial :Addsupplementarydata,suchasadditionalplotsor computational details, in appendices.
MinorErrors
8. TypographicalErrors:Correctminortypos,e.g., "Quantumdotss" to "Quantumdots."
9. FormattingErrors: Ensure consistent font sizes and styles, especially inequations.
$10. \ {\rm References}: {\rm VerifyURL citations for accuracy and update the mwhere necessary}.$
General Questions
1. QuantumConfinement :HowdoestheexcitonBohrradiusinfluencethetransition between weak, intermediate, and strong confinement regimes?
 MaterialDependency:WhydodifferentmaterialslikeZnO,CdS,andCdSeexhibit varying ranges of confinement regimes?
3. Applications :Howcanthefindingsonquantumconfinementregimesbedirectlyapplied to improve the performance of optoelectronic devices?
Introduction
 QuantumDots: Whataretheprimarydifferencesbetweenbulksemiconductorsand quantum dots in terms of electronic and optical properties?
 FabricationMethods: Howdoesthechoiceoffabricationmethod(e.g.,colloidal synthesis vs. epitaxy) impact the properties of quantum dots?
Methods
 Equations: HowdotheassumptionsbehindEquation(1)influencetheaccuracyof confinement energy calculations?
4. DeBroglieWavelength :WhyisthedeBrogliewavelengthequivalenttotheexciton Bohr radius in quantum confinement theory?
5. ComputationalApproach:Whatnumericaltechniquescouldbeusedtorefinethe theoretical analysis of confinement regimes?
Results
 SizeRanges: HowdothecalculatedrangesforquantumconfinementregimesinZnO, CdS, and CdSe compare with experimental observations?
 EnergyGaps: Whatare the implications of confinement-induced changes in energy gaps for the practical design of guantum dot-based devices?

8. MaterialParameters :Howsensitivearetheconfinementenergycalculationstothe dielectric constant and effective mass values used?
Discussion
 PhysicalInterpretation:Whatphysicalfactorscontributetothestrongerconfinement effects in ZnO compared to CdSe?
10. PracticalUse :Howdotheresultsguidetheoptimizationofquantumdotsizeforspecific applications like transistors or LEDs?
11. TransitionPoints :Whyarethetransitionsbetweenconfinementregimescriticalfor practical device applications?
Figuresand Data
12. Graphs :Howcouldadditionalgraphs,suchasconfinementenergyvs.size,helpvalidate the theoretical findings?
13. Visualization :WhatinsightscanbedrawnfromFigure1aboutsize-dependentoptical properties of quantum dots?
AdvancedTopics
 QuantumMechanics: Howdoestheconceptofwavefunctionconfinementrelatetothe discrete energy levels in quantum dots?
 Heterostructures: Howwould heterostructure quantum dots (e.g., core-shell designs) modify the confinement regimes described?
3. TemperatureEffects :Howmighttemperaturevariationsaffecttheconfinementregimes and calculated parameters?
FutureWork
4. MaterialExploration: Howmight the confinement regimes differ for other semiconductors like silicon or gallium arsenide?
5. ExperimentalValidation:Whatexperimentaltechniqueswouldbemosteffectivein verifying the theoretical findings presented?
6. Multi-ExcitonSystems: Howdomulti-excitoneffects influence the confinementenergy in quantum dots?

<u>PART 2:</u>

	Reviewer's comment	Author's comment (and highlight that authors should write
Are there ethical issues in this manuscript?	(If yes, Kindly please write down the ethical issues here in details)	

Reviewer Details:

Name:	B. Sundaravel
Department, University & Country	Kalasalingam Academy of Research and Education, India

(if agreed with reviewer, correct the manuscript part in the manuscript. It is mandatory that te his/her feedback here)