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Abstract: Foresight of geothermal energy installation is valuable for energy decision-makers, allowing 

them to readily identify new capacity units, improve existing energy policies and plans, expand 

future infrastructure, and fulfill consumer load needs. Therefore, in this paper, an improved grey 

prediction model (IGM (1,1)) was applied to perform the annual geothermal energy installation 

capacity prediction for the top 10 countries based on installed power generation capacity evaluated at 

the end of 2021, namely the United States, Indonesia, Philippines, Turkey, New Zealand, Mexico, Italy, 

Kenya, Iceland, and Japan, for the next nine years for the period from 2022 through 2030. These data 

can be used by future researchers in the field. Separately, datasets from 2000 to 2021 were collected for 

each country’s geothermal energy installation capacity to build a model which can accurately predict 

the annually geothermal energy installation capacity by 2030. The IGM (1,1) model used a small 

dataset of 22 data points, with one point denoting one year (i.e., 22 years), to predict the capacity of 

geothermal energy installations for the next nine years. Following that, the model was implemented 

for each dataset in MATLAB, where appropriate, and the model accuracy was evaluated. Ten separate 

geothermal energy installation capacity datasets were used to validate the improved model, and these 

datasets further demonstrated the overall improved model’s accuracy. The results prove that the 

prediction accuracy of the IGM (1,1) model outperforms the benchmark conventional GM (1,1) model, 

thereby enhancing the overall accuracy of the GM (1,1) model. The IGM (1,1) model ensures error 

reduction, suggesting that it is an effective and promising tool for accurate short-term prediction. The 

results reveal the 2030 geothermal energy installation capacity rankings from the United States 

having the larger capacity of 3.925 GW to Japan having the smaller capacity of 0.481 GW 

. 
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1. Introduction 

Conventional fossil fuel energy production is expensive, limited, and recognized as one 

of the primary cause of world climate change and air pollution. Thus, switching to clean, 

renewable en- ergy energy sources is imperative owing to their significant advantages. 

These advantages include efficiency, reliability, sustainability, cost-effectiveness, low 

maintenance, and environmental friendliness as they decrease greenhouse gas emissions. 

For instance, geothermal energy technology is regarded as one of the most promising 

renewable energy sources because it relies on the Earth’s relatively constant temperature 

to drive steam turbines, which in turn generate electricity. In addition, it is available all year 

and is unaffected by climatic conditions, which typically stabilizes energy output to fulfill the 

baseload energy demand, unlike other renewable energy sources such as solar, hydro, and 

wind energy. Furthermore, geothermal energy is less expensive than fossil fuels and even 

other renewable energy sources [1–5]. Geothermal energy technology can be installed 

vertically almost anywhere; however, due to the high expense of drilling, which typically 

goes hundreds of meters below the earth’s surface, geothermal energy technology is more 

costly to install in dense mediums such as rock or stone mountains. Therefore, it is 

preferable to choose a suitable 
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geological site with strong thermal and drilling properties, which lowers capital costs. 

Moreover, it is preferable if it is placed in close proximity to the structure using its energy 

outputs, saving money on expensive transmission lines that lose energy when traveling 

long distances. It is worth noting that continuous monitoring and control are important 

to ensure the system operates efficiently and, therefore, can supply the desired output 

energy to meet electrical demands. Further improvements in the existing parameters could 

potentially increase the accelerating production load. 

Even though the initial capital cost is relatively high, geothermal utilization has 

gradually gained global popularity, especially for direct-use applications (i.e., heating, 

cooling, etc.) and electricity generation. The number of annual geothermal unit installations 

reflects this growing demand. Since 1913, geothermal energy has been utilized to generate 

hundreds of megawatts (MW) of electricity, and this production has increased in subsequent 

decades. Specifically, geothermal energy’s installed capacity has gradually increased over 

the past 10 years (2009–2021), reaching 15,644 megawatts (MW) in 2021. This usage has 

been spread across 27 countries, 10 of which account for approximately 94.52% of the total 

existing capacity. The top 10 countries in 2021 which have the largest installed capacity of 

geothermal energy (in MW) are the US (3722), Indonesia (2276), Philippines (1918), Turkey 

(1710), New Zealand (1037), Mexico (963), Italy (944), Kenya (861), Iceland (754), and Japan 

(603) (see Table 1). Figure 1 demonstrates the geothermal energy installation capacity 

worldwide from 2009 to 2021 (in MW) [6–10]. 

Table 1. Geothermal energy installation capacity for the top 10 countries in 2021. 
 

Country Capacity in Megawatts (MW) 

United States 3722 
Indonesia 2276 

Philippines 1918 
Turkey 1710 

New Zealand 1037 
Mexico 963 

Italy 944 
Kenya 861 
Iceland 754 

Japan 603 

 

Bertani Ruggero [11] forecasted the worldwide geothermal energy power generation 

installation capacity for 2025, 2030, and 2050, and the anticipated results were found to be 

19.10, 51, and 70 GW, respectively. Şahin [12] forecasted Turkey’s total installed capacity of 

power generation resources, including geothermal, thermal, solar, and wind energy, from 

2017 to 2021 using capacity factor estimation. Klein [13] predicted geothermal installation 

capacity of geothermal power generation in Japan was anticipated to be 0.55 GW in 2030. 

Zeng et al. [14] applied the diffusion velocity model to predict the installation capacity of 

geothermal energy worldwide from 2012 to 2030. In addition, Chang and Li [15] proposed 

a dynamic linear programming model to predict the power generation capacity, 15,156 MW 

of geothermal energy, that is anticipated to be built between 2010 and 2030. In sum, 

researchers have utilized numerous methods to forecast the world’s geothermal energy 

installation capacity. 
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Figure 1. The installed geothermal energy capacity worldwide from 2009 to 2021 [8]. 

The grey prediction model (GM) is a mathematical model that can be used to charac- 

terize characterize an unknown system behavior using a small data size, which contains a 

minimum of four data points. The grey prediction model was introduced by Dan in 1982 and 

remains widely applied in uncertain systems with incomplete information and discrete data 

for short time series prediction [16]. For the GM (m, n) model, m represents the order of 

the differential equation and n represents the number of variables that can be predicted. For 

instance, the GM (1,1) model is a first-order differential equation to predict one variable. 

The GM (1,1) model is regarded as the most utilized model in grey system theory for 

short time series prediction because of its significant advantages, simple computation, high 

computational efficiency, and the capability to characterize an unknown system with small- 

sized small sized dataset [17,18]. Hence, the GM (1,1) model so far has been applied to 

several research fields, and it has promising accurate prediction results when it is 

enhanced [19–23]. The GM (1,1) model relies on the system dataset to make predictions; 

therefore, the dataset must be free of negatives, randoms, and anomalies, preferably 

consistent, allowing the model to accurately predict. For instance, Salhein et al. [21] used 

three different datasets in terms of consistency to validate the IGM (1,1) model accuracy. 

The results demonstrated that the IGM (1,1) model achieved the best performance when the 

data were more consistent than others. It is important to note that the model prediction 

could perform better with a more  

consistent dataset. The GM (1,1) model has two parameters [a, b] which are defined as a 
being the developing coefficient and b being grey control quantity; they are regarded as 
critical to its performance. 

Since the GM (1,1) model’s prediction accuracy is limited and should be improved, 

some scholars made the following improvements to increase its accuracy: Hsu [24] im- 

proved the prediction accuracy of the GM (1,1) model by using the Markov chain model 

and Fourier residual model and applied the improved model to predict the global inte- 

grated circuit industry. It was found that the improved model increased the prediction 

accuracy of the original GM (1,1) model. Wang et al. [25] enhanced the prediction accuracy 

of the traditional GM (1,1) model by optimizing the initial condition. According to the 



UNDER PEER REVIEW 
 

 

 
results, the modified GM (1,1) model was more accurate than the traditional GM (1,1) 

model. Furthermore, Hsu and Chen [26] further improved the GM (1,1) model by combing 

artificial neural network (ANN) sign estimation with residual modification, which was 

applied to perform the power demand forecasting of Taiwan. The results showed that 

the improved model was more accurate than the original GM (1,1) model. The remnant 

model and L’Hopital’s rule were incorporated into the conventional GM (1,1) model to 

improve its performance [27]. Wind speed data from Palmerston North, New Zealand, 

were employed to evaluate the improved model. According to their results, the new model 

enhanced the prediction validity and performance of the conventional GM (1,1) model by 

98% and 9%, respectively. Salhein et al. [21] proposed the improved grey prediction model 

(IGM (1,1)) which was based on optimizing the current predicted value by subtracting 

the error between the previous accumulated time response of the GM (1,1) model and the 

previous background value. The IGM (1,1) model was applied to perform the prediction of 

the output temperature of the geothermal heat pump systems (GHPSs) at Oklahoma State 

University, the University Politècnica de València, and Oakland University. The results 

indicated that the IGM (1,1) model dramatically enhanced the prediction accuracy of the 

traditional GM (1,1) model and was more accurate than GM (1,1) model for all datasets used. 

Yao and Wang [28] improved the accuracy of the GM (1,1) model based on restructuring 

the background value, which was applied to predict electricity consumption in eastern 

China. The modified model’s prediction accuracy outperformed the traditional GM (1,1) 

model. An improved transformed grey model based on a genetic algorithm (ITGM (1,1)) 

was developed by Hsu [29]; the output of the Taiwanese optoelectronics industry dataset 

was used to verify the ITGM model accuracy. The ITGM model was more accurate than 

other applied prediction models. Furthermore, Akay and Atak [30] proposed the grey 

prediction with a rolling mechanism (GPRM) model, which was based on integrating the 

rolling mechanism with the conventional GM (1,1) model. Li and Zhang [31] improved the 

GM (1,1) model by transforming the original data sequence and optimizing the background 

value. Nevertheless, more improvements are required to increase the GM (1,1) model 

prediction precision. 

Predicting the installation capacity of geothermal energy is important for energy 

decision-makers, allowing them to readily identify new capacity units, improve existing 

energy policies and plans, expand future infrastructure, and meet particular consumer 

load needs. More importantly, applying a prediction model that is accurate, reliable, and 

performs well with limited datasets could provide valuable information that can be used 

for the above-mentioned objectives. Therefore, the GM model could be appropriate to 

forecast the short-term installation capacity of geothermal energy. 

This paper aims to predict the annual geothermal energy installation capacity for the 

top 10 countries, namely the United States, Indonesia, Philippines, Turkey, New Zealand, 

Mexico, Italy, Kenya, Iceland, and Japan, for the next nine years for the period from 2022 to 

2030, using the IGM (1,1) model proposed in [21], to provide data can be used by future 

researchers in the energy field. The simulations were conducted in MATLAB. Ten datasets 

were used to validate the IGM (1,1) model, and for each dataset, its performance was 

compared to that of the conventional GM (1,1) model. 

The remainder of the paper is structured as follows: Section 2 describes the materials 

and methods. The data description is presented in Section 3. Evaluations of model accuracy 

are listed in Section 4. Section 5 presents the results and the discussion; the conclusion is 

presented in Section 6. 

2. Material and Methods 

2.1. The GM (1,1) Model 

The modeling procedure for the traditional GM (1,1) model is as follows: 

The original non-negative data sequence X(0) is denoted as 

X(0) = 
{

x(0)(1),  x(0)(2),  x(0)(3), . . . , x(0)(n)
} 

(1) 
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i=1 

−Z(1)(3) 1 x(0)(3) 

 , Y =  

x(0)(1) − b e−a(k−1) + b 
a a 

 

 

where n is the length of the raw data sequence, which is specified as n ≥ 4. 

Next, the first-order accumulated generating operation (1-AGO) is applied to Equation 

(1) to generate the accumulative sequence x(1) = x(1)(1), x(1)(2), x(1)(3), . . . , x(1)(n) , 

where the sequence of x(1) is derived as 

x(1)(k) = ∑
k 

x(0)(i) k = 1, 2, 3, . . . , n (2) 

The background value array sequence z(0) is expressed as follows: 

z(1) = 
t
z(1)(1), z(1)(2), z(1)(3), . . . , z(1)(n)

y
, (3) 

 
where z(1)(k) = αx(1)(k) + αx(1)(k − 1), k = 2, 3, . . . , n. α is a weighting factor 0 ≤ α ≤ 1. 

It is specified that α = 0.5. 

The GM (1,1) model equation is defined as follows: 

x(0)(k) + az(1)(k) = b (4) 

where k is a time point, a is a developing coefficient, and b is a grey action quantity. Then, 

the GM (1,1) model’s parameters aˆ = [a, b]T are estimated by using the least square method, 

which is given by 
 

 
where 

aˆ = [a, b]T = 
t
BTB

y−1
BTY (5) 

−Z(1)(2) 1  
  

x(0)(2)  
  

 

 
(1) 

 

 
(0) 

B = 
.
 

 . 
  

.
 , and x (1) = x (1) 

−Z(1)(n) 1

 

x(0)(n)  
The following first-order differential equation, called a whitening equation of x(0)(k) + 

az(1)(k) = b, is expressed as 
dx(1) 

dt  
+ ax (1) = b (6) 

The GM (1,1) model predicted sequence xˆ(0)(k) is obtained by solving the differential 

equation in Equation (4) using inverse 1-AGO, as written in Equation (7): 

xˆ(0)(1) = xˆ(0)(1) 
t y 

 

 
Applying the IAGO to the xˆ(0)(k) yields the predicted sequence xˆ(0)(k) = xˆ(1)(k) − 

xˆ(1)(k − 1), where xˆ(0)(k) is the predicted time response of the grey prediction model at 

time k and xˆ(1)(k) is the accumulated time response of the grey prediction model at time k. 

2.2. The Improved IGM (1,1) 

Due to the GM (1,1) model producing an inaccurate prediction, its accuracy prediction 

needs to be improved. Thus, the IGM (1,1) model was proposed to reduce prediction error 

and improve the overall GM (1,1) model performance. The improved IGM (1,1) model 

was based on optimizing the current predicted value by subtracting the error between 

the previous accumulated time response xˆ(1)(k) of the GM (1,1) model and the previous 

background value z(1)(k) [21]. The IGM (1,1) model guarantees error reduction, implying 
that it is a promising approach for making accurate predictions. Consequently, the modeling 
procedure for the improved IGM (1,1) model is detailed as follows: 

xˆ(0)(k) = (1 − e−a) 
k = 2, 3, . . . , n (7) 

( 
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According to the GM (1,1) model Equation (4), and the predicted sequence Equation (7), 

the error increases as the background value z(1)(k) generates sequences to accumulate the 

general predicted sequence x(1)(k). So, Equation (8) defines the predicted value’s error. 

δ(1)(k) = xˆ(1)(k − 1) − z(1)(k − 1), k = 2, 3, . . . , n (8) 

where δ(1)(k) is the predicted value’s error at time point k, xˆ(1)(k − 1) is the accumulated 

time response of the GM (1,1) model at time point (k − 1), and z(1)(k − 1) is the previous 
background value at time point (k − 1). Implementing the background value Equation (3) 

and the general predicted sequence Equation (7) into Equation (8) renders the following: 

δ(1)(k) =
  

1 − e−a

  

x(0)(1) − 
b
  

e−a(k−1) + 
b
  

−
 

αx(1)(k) + αx(1)(k − 1)
 

(9) 

 
Substituting the predicted value’s error into Equation (7) renders the IGM (1,1) model 

predicted sequence xˆ(0)(k) expressed as follows: 

f

xˆ(0)(k) = 

xˆ(0)(1) = x(0)(1) 

(1 − e−a )
t
x(0)(1) − b 

y
e−a(k−1) + b

 
− δ(1)(k)  

k = 2, 3, . . . , n (10) 

The modeling procedure for the improved IGM (1,1) model is shown in Figure 2. 

 

Figure 2. Schematic diagram of the IGM (1,1) model. 
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3. Data Description 

In this study, the installation capacity data for the top 10 countries that utilize geother- 

mal geothermal energy based on the 2021 report evaluation, namely the United States, 

Indonesia, Philippines, Turkey, New Zealand, Mexico, Italy, Kenya, Iceland, and Japan, 

were collected from various references [8–10] and were checked for anomalies, 

negatives, and random- ness. The 30 years of data were split into two periods: an in-

sample dataset (i.e., training) from 2000 to 2021 and an out-of-sample dataset (i.e., 

prediction) from 2022 through 2030. Furthermore, the in-sample portion was split into 

two parts: 75% of the data were used to build the model by training on the dataset 

behavior from 2000 to 2015 to accurately predict the installation capacity for the 

following nine years, and the remaining 25% of data from 2016 to 2021 were chosen to 

assess the accuracy. The prediction model was applied to perform the geothermal energy 

capacity prediction of each above-mentioned dataset separately, which was 

implemented using MATLAB (R2021a) software. 

4. Model Accuracy Evaluations 

In this study, three metrics were used to assess the prediction accuracy of the applied 

models: mean absolute error (MAE), root mean square error (RMSE), and mean absolute 

percentage error (MAPE). The calculations for MAE, RMSE, and MAPE are written in 

Equations (11)–(13), respectively. 

 
MAE 

n 
Ixˆ(0) k 

 

x(0) k I 
 

(11) 

 
 

RMSE 

 
1  

x(0) k xˆ(0) k
 2 

(12) 

 

MAPE 
1  n  xˆ(0)(k) − x(0)(k) 

100% (13) 

 

where x(0)(k) and xˆ(0)(k) are the actual and predicted data at time k, and n is the number 

of observations. When the model results in lower MAE, RMSE, and MAPE (%) values, it 
indicates it is performing optimally. 

5. Results and Discussions 

This section forecasts the annual geothermal energy installation capacity for the top 

10 countries utilizing geothermal energy evaluated at the end of 2021, including the US, 

Indonesia, Philippines, Turkey, New Zealand, Mexico, Italy, Kenya, Iceland, Japan, and 

the world, separately for the nine years from the period of 2022 through 2030 by applying 

the IGM (1,1) model described in Section 2. In addition, 10 datasets are used to verify the 

accuracy of the IGM (1,1) model in comparison to the conventional GM (1,1) model. 

Annual Forecasting of the United States’ Geothermal Energy Installation Capacity 

The United States’ geothermal energy installed capacity dataset from 2000 to 2021 was 

used to build the model, which was generated in the following sequence: 

x(0)(k) = (x(0)(2000), x(0)(2001), . . . , x(0)(2021)) = (3.10, 3.10, . . . , 3.722) 

The accumulative generated sequence is 

x(1)(k) = 
t
x(1)(2000), x(1)(2001), . . . , x(1)(2021)

y 
= (3.10, 6.20, . . . , 73.7480) 

=  ∑ 
i=1 

1 
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    3.902 

3.925 

  

. 

 

The IGM (1,1) was applied to perform United States’ annual geothermal energy 
installation capacity prediction for the next nine years; thus, the model’s parameters [a, b] 

were calculated using Equation (5) as follows: 

[a, b]T = 
t
BTB

y−1
BTY, 

 

where  
−4.6500 1 7.7540 1 

 
3.10  

− 3.108 
−10.862 1 
  3.108 

[a, b]T = [−0.0102, 2.9847]T, B = : : and Y =  
. . : 

    

 

 

The IGM (1,1) model predicted sequence xˆ(0)(k) is calculated based on Equation (10) 

and is expressed as follows: 
 

xˆ(0)(1) = x(0)(1) = 3.1 GW 

xˆ(0)(k) = −3.032e0.0102(k−1) − 292.618 − (xˆ(1)(k − 1) − z(1)(k − 1)) 
(14) 

By substituting the values of k = 2, 3, . . . , 30 into the above Equation (14), we obtained 

the model training (in-sample) and prediction (out-of-sample) results. The prediction 

results are depicted in Figure 3 and Table 2. According to Figure 3, the IGM (1,1) model is 

well trained on the in-sample dataset, which reflects its robustness to fit the dataset values 

much more closely and therefore accurately predicted the United States’ annual geothermal 

energy capacity in gigawatts (GW) for the next nine years from 2022 to 2030, as follows: 

3.741, 3.764, 3.787, 3.81, 3.833, 3.856, 3.879, 3.902, and 3.925 (see Table 2). The capacity is 
also anticipated to increase by 0.203 GW in just nine years, reaching 3.925 GW by 2030. The 

prediction accuracy of the IGM (1,1) and GM (1,1) models was assessed using RMSE, MAE, 

and MAPE (%) and then compared as depicted in Table 3. From Table 3, we can observe 

that for the United States, the IGM (1,1) model has a lower MAPE (%) value of 0.64 than 

the GM (1,1) model, which has a value of 0.72. Therefore, this proves that the IGM (1,1) 

model is more accurate than the GM (1,1) model and has increased the prediction accuracy 

of the GM (1,1) model. 

 

Figure 3. Cont. 
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Figure 3. Actual (in-sample) and predicted (out-of-sample) geothermal energy installation capacity 

values for (a) the United States, (b) Indonesia, (c) Turkey, (d) the Philippines, (e) New Zealand, 

(f) Mexico, (g) Italy, (h) Kenya, (i) Iceland, and (j) Japan. 

 

Table 2. Predicted annual installation capacity of geothermal energy for the top 10 countries utilizing 

geothermal energy for the period from 2022 through 2030 using the IGM (1,1) and GM (1,1) models. 

Country 
Predicted 

2022 2023 2024 2025 2026 2027 2028 2029 2030 

GM (1,1) 3.7566 3.7952 3.8341 3.8735 3.9132 3.9533 3.9939 4.0349 4.0763 
United States 

Indonesia 

Philippines 

Turkey 

New Zealand 

Mexico 

Italy 

 
Kenya 

 

 
Iceland 

Japan 

IGM (1,1) 3.741 3.764 3.787 3.81 3.833 3.856 3.879 3.902 3.925 

GM (1,1) 2.3824 2.5258 2.6837 2.8483 3.023 3.2085 3.4053 3.6143 3.836 
 

 

IGM (1,1) 2.2769 2.35 2.4231 2.4962 2.5693 2.6424 2.7155 2.7886 2.8617 

GM (1,1) 1.9337 1.9391 1.9446 1.95 1.9555 1.961 1.9664 1.972 1.9775 
 

 

IGM (1,1) 1.9281 1.9281 1.9281 1.9281 1.9281 1.9281 1.9281 1.9281 1.9281 

GM (1,1) 8.5189 10.5675 13.1086 16.2608 20.1709 25.0213 31.0381 38.5017 47.7601 
 

 

IGM (1,1) 1.7254 1.8062 1.8869 1.9677 2.0484 2.1292 2.2099 2.2907 2.3714 

GM (1,1) 1.1863 1.2492 1.3154 1.3851 1.4584 1.5357 1.6171 1.7027 1.7929 

IGM (1,1) 0.9935 1.003 1.0125 1.022 1.0315 1.041 1.0505 1.06 1.0695 

GM (1,1) 0.9301 0.9311 0.9321 0.9331 0.9341 0.935 0.936 0.937 0.938 

IGM (1,1) 0.9762 0.9889 1.0016 1.0143 1.027 1.0397 1.0524 1.0651 1.0778 

GM (1,1) 0.8118 0.8212 0.8307 0.8403 0.85 0.8599 0.8698 0.8799 0.8901 
 

 

IGM (1,1) 0.8041 0.8214 0.8387 0.856 0.8733 0.8906 0.9079 0.9252 0.9425 

GM (1,1) 1.2472 1.4273 1.6333 1.869 2.1388 2.4475 2.8007 3.205 3.6676 
 

 

IGM (1,1) 0.9526 1.0422 1.1318 1.2214 1.311 1.4006 1.4902 1.5798 1.6694 

GM (1,1) 0.9336 0.983 1.0349 1.0896 1.1472 1.2078 1.2717 1.3389 1.4096 
 

 

IGM (1,1) 0.7565 0.7568 0.7571 0.7574 0.7577 0.7580 0.7583 0.7586 0.7589 

GM (1,1) 0.4826 0.4797 0.4768 0.4739 0.4711 0.4682 0.4654 0.4626 0.4598 

IGM (1,1) 0.481 0.481 0.481 0.481 0.481 0.481 0.481 0.481 0.481 
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Table 3. The accuracy evaluation metrics for comparing the GM (1,1), and IGM (1,1) models. 
 

Country Accuracy Criteria GM (1,1) IGM (1,1) 

 MAE 0.026 0.023 

United States RMSE 0.028 0.030 

 MAPE (%) 0.72 0.64 

 MAE 0.072 0.070 

Indonesia RMSE 0.086 0.081 

 MAPE (%) 3.86 3.63 

 MAE 0.009 0.001 
Philippines RMSE 0.011 0.002 

 MAPE (%) 0.48 0.05 

 MAE 2.955 0.088 
Turkey RMSE 3.216 0.094 

 MAPE (%) 214.26 7.42 

 MAE 0.063 0.004 

New Zealand RMSE 0.077 0.006 

 MAPE (%) 6.44 0.37 

 MAE 0.020 0.006 

Mexico RMSE 0.025 0.008 

 MAPE (%) 2.08 0.62 

 MAE 0.010 0.003 
Italy RMSE 0.012 0.006 

 MAPE (%) 1.25 0.37 

 MAE 0.107 0.020 
Kenya RMSE 0.125 0.038 

 MAPE (%) 14.20 2.54 

 MAE 0.050 0.008 

Iceland RMSE 0.067 0.013 

 MAPE (%) 6.64 1.04 

 MAE 0.015 0.006 
Japan RMSE 0.17 0.011 

 MAPE (%) 3.10 1.23 

 

Then, the improved IGM (1,1) model was applied to predict the annual installed 

geothermal energy capacity for Indonesia, Philippines, Turkey, New Zealand, Mexico, 

Italy, Kenya, Iceland, and Japan up to 2030. Consequently, the IGM (1,1) model was 

implemented in MATLAB, and prediction results for the above-mentioned datasets were 

observed (depicted in Figure 3 and Table 2). Table 3 shows the evaluation results of the 

IGM (1,1) and GM (1,1) models. 

Due to the limitations of the GM (1,1) model, prediction error occurs and increases 
as the background value z(1)(k) generates sequences accumulating the general predicted 

sequence x(1)(k), resulting in inaccurate predictions. Furthermore, its output differs from 
the actual dataset values, showing that the model was not properly trained on the dataset, 
which resulted in incongruities between the model and the data. To address this issue, 

Salhein et al. [21] proposed the IGM (1,1) model to overcome the weaknesses of the GM (1,1) 

model and enhance its overall performance by subtracting the error between the previous 

accumulated time response xˆ(1)(k) of the GM (1,1) model and the previous background 

value z(1)(k). The prediction accuracies of the IGM (1,1) and GM (1,1) models were evalu- 
ated using MAE, RMSE, and MAPE (%) based on Equations (11)–(13), and the results are 
presented in Table 3. The results revealed that the IGM (1,1) model reduced prediction error 

while significantly enhancing the GM (1,1) model’s prediction accuracy in both in-sample 

and out-of-sample periods. Furthermore, the IGM (1,1) model had lower RMSE, MAE, and 

MAPE (%) values than the GM (1,1) model for all datasets used (see Table 3). Thus, the 
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IGM (1,1) model is more accurate than the GM (1,1) model; nevertheless, its accuracy varies 

from one dataset to another depending on each dataset’s self-behaviors. For instance, the 

IGM (1,1) model shows lower MAE, RMSE, and MAPE (%) values for the Philippines, New 

Zealand, and Italy than for the other used countries’ datasets because the Philippines, New 

Zealand, and Italy datasets were more consistent than others; thus, it was simple for the 

model to accurately predict the installed capacity for the next nine years. Therefore, the 

model prediction can perform better with a more consistent dataset. 

For the next nine years, geothermal energy installation capacity in the United States, 

Indonesia, Turkey, New Zealand, Mexico, Italy, and Kenya will increase but at different 

rates. However, the installed capacities of the other countries—Iceland, Japan, and the 

Philippines—will remain stable or nearly unchanged. Our findings agreed with Klein [13] 

in showing that geothermal energy installation capacity in Japan will be approximately 

0.55 GW by 2030. 

In summary, according to the IGM (1,1) model prediction results, geothermal energy 

installed capacity in 2030 is anticipated to be ranked as follows: United States, Indonesia, 

Turkey, Philippines, Kenya, Mexico, New Zealand, Italy, Iceland, and Japan with GW 

capacities of 3.925, 2.8617, 2.3714, 1.9281, 1.6694, 1.0778, 1.0695, 0.9425, 0.7589, and 0.481, 

respectively, as shown in Table 4 and Figure 4. 

 
Table 4. Geothermal energy installation capacity prediction for the top 10 countries utilizing geother- 

mal geothermal energy in 2030 using the IGM (1,1) model. 
 

Country Capacity in Gigawatts (GW) 

United States 3.925 
Indonesia 2.8617 

Turkey 2.3714 
Philippines 1.9281 

Kenya 1.6694 
Mexico 1.0778 

New Zealand 1.0695 
Italy 0.9425 

Iceland 0.7589 

Japan 0.481 

 

Figure 4. Geothermal energy installation capacity prediction for the top 10 countries utilizing 

geothermal energy in 2030 using the IGM (1,1) model. 
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6. Conclusions 

In this study, the improved grey prediction model (IGM (1,1)) was applied to predict 

the annual geothermal energy installation capacity of the top 10 countries that utilize 

geothermal energy evaluated at the end of 2021, namely the United States, Indonesia, 

Philippines, Turkey, New Zealand, Mexico, Italy, Kenya, Iceland, and Japan, for the next 

nine years for the period from 2022 through 2030. The IGM (1,1) model was based on 

optimizing the current predicted value by subtracting the error between the previous 

accumulated time response of the GM (1,1) model and the previous background value. 

Ten geothermal energy installed capacity datasets were utilized to further validate the 

IGM (1,1) model. Consequently, the IGM (1,1) model enhanced the GM (1,1) model’s 

prediction accuracy by reducing prediction errors with varying percentages depending on 

each dataset’s self-behavior. The findings demonstrated that the improved IGM (1,1) model 

was more accurate than the GM (1,1) model, indicating that it is an effective and promising 

tool for accurate short-term prediction. According to the IGM (1,1) model prediction results, 

the current ranking of countries utilizing geothermal energy is expected to change by 2030, 

reflecting the following rankings capacity in gigawatts (GW): United States (3.925), Indonesia 

(2.8617), Turkey (2.3714), Philippines (1.9281), Kenya (1.6694), Mexico (1.0778), New 

Zealand (1.0695), Italy (0.9425), Iceland (0.7589), and Japan (0.481), as depicted in Table 4. 

Additionally, world usage is estimated to be at 23.4368 GW by 2030, in contrast to 15.644 

GW in 2021. 
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Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Geothermal energy installation capacity datasets are publicly available 

at Installed electricity capacity by country/area (MW) by Country/area, Technology, Grid connec- 

tion and Year. PxWeb (irena.org), https://www.statista.com/statistics/183452/total-us-geothermal- 

energy-capacity-from-2000/, Installed geothermal energy capacity, 2020 (ourworldindata.org) (ac- 

cessed on 2 August 2022). 

 

 

Nomenclature 

List of abbreviations 

AGO Accumulative generating operation 

GM Grey prediction model 

GM (1,1) GM with a first-order differential equation to predict one variable 

IGM (1,1) Improved grey prediction model 

1- AGO First-order accumulated generating operation 

Inverse 1-AGO Inverse first-order accumulated generating operation 

MAE Mean absolute error 

RMSE Root mean square error 

MAPE Mean absolute percentage error 

GW Gigawatts 

MW Megawatts 

https://www.statista.com/statistics/183452/total-us-geothermal-energy-capacity-from-2000/
https://www.statista.com/statistics/183452/total-us-geothermal-energy-capacity-from-2000/
http://ourworldindata.org/
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List of symbols 

a Developing coefficient 

b Grey action quantity 

x(0)(k) A non-negative original data sequence 

x(1)(k) Accumulated time response of x(0)
 

z(1)(k) Background value array 

xˆ(0)(k)  Predicted time response of grey prediction model at time k 

xˆ(1)(k) Accumulated time response of grey prediction model at time k 
k  Time point 

n Number of years of observation 

List of greek letters 
α Weighting factor 

δ(1)(k) Predicted value’s error at time k 
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