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This chapter will focus on the topic of nonlinear control for nonlinear system behaves
naturally. Linear system is only an approximation to our life. In this chapter,modeling and
solution of nonlinear control system will be provided to design the gain of nonlinear
control. Furthermore, nonlinear optimal control and nonlinear observer are also explained
to help readers analyze and design a nonlinear system. Besides these contents, the
linearization methods of nonlinear control system are also provided for readers to
approximately analyze a nonlinear system.

Objectives
When you have finished this chapter, you should be able to:
 Learn some basic concepts and properties on nonlinear control.
 Know how to convert a nonlinear control system into an linear system.
 Understand the controllability and observability of nonlinear control
 Grasp the idea of nonlinear gain control and nonlinear optimal control.
 Know a nonlinear observer.

12.1 Introduction

Usually control system is always described by input variables u or r and output
variable y . In this sense, a control system is considered as a mapping from the input space
to the output space. Before 1950’s, control problems were largely treated as filtering
problems and in the frequency domain, which is particularly suitable for single-input and
single-output systems in classical control theory.

During 1950’s Rodolf Emil Kalman puts forward a state space description for control
systems. A set of state variables were introduced to describe the control system. Intuitively,
the control system is divided into two parts: the first part is a set of differential or
difference equations (called state equation) which are employed to describe the dynamics
from input variable u to state variables x , and then a algebraic equation(called output
equation) is used to describe the mapping from system state variable vector x to output
vector y .

For specific control systems, there are different types of state space descriptions that
could realize the same function description of control system. These state space models are
called state space realization of input-output mapping. If there is no other realization that
has less dimension of the state space model, such realization is called minimum realization
of control system.

Feedback is possibly the most fundamental concept in control system and has a very
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long history. Feedback means that the control strategy depends on the output vector and
system state vector of system. Hence in modern control system, the feedback can be
classified into state feedback control and output feedback control which have been in
previous chapters of this book.

A nonlinear control system is always described by the following differential equation
and output equation in time domain.

  UuRxtuxfx x 


,,,, (12.1a)

  Nytuxhy  ，,, (12.1b)

Here, NURx ,, are all kinds of dimensions lmn ,, respectively.  uxf ,

and  xh are smooth mapping relation. In many applications we have
lmn RNRURM  ,, . When the expressions of  tuxf ,, and  xh are both

linear equation, equation set(12.1) represents a linear system. If they are nonlinear,
equation(12.1) does a nonlinear system.

In the case of discrete systems, the following difference equations are used:
      kukxkfkx ,,1  (12.2a)

      kukxkhky ,, (12.2b)

Here, x is 1n state vector, nRx ; u is 1m input vector, mRu , and y is

1l output vector, lRy .
Reviewing the history of modern control theory, people know that the linear theory

was firstly put forward and developed for linear systems. And then as the control theory for
linear control systems had become very mature, control theory for nonlinear control
systems started to be considered and studied. So in nonlinear control theory, a lot of
concepts and results from linear systems are originated, inherited, and developed, or
extended to nonlinear systems, however many results in linear system can not be applied to
nonlinear systems, for example homogeneity does not apply. The response to an input

 tu is not just  times the response to  tu . The response to  0tx is not just 

times the response to  0tx . The whole concept of designing control systems based on

typical test inputs(unit steps, sinusoid, cosine, and so on) and then predicting behavior to an
actual input by scaling and superposition is generally invalid.

Though the linear control theory is one of the major foundation of the nonlinear
control theory, nonlinear control systems are more complicated than linear control systems,
and furthermore has itself unique properties. In fact, linear systems are a particular and
simplest class of nonlinear systems. Dynamic performance of a nonlinear system depends
on the system’s parameters and initial conditions, as well as on the form and the magnitude
of external actions. The basic solution of the differential equation of nonlinear are generally
very complex and various.

In this chapter, we will only coarsely narrate the main theories or opinions on
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nonlinear control systems.

12.1.1 Basic problem of nonlinear control system

Control systems with at least one nonlinear element are called nonlinear systems.
Their dynamics are described by nonlinear mathematical model. Contrary to linear system
theory, there does not exist a general theory applicable to all nonlinear systems. Instead, a
very complicated mathematical apparatus is employed, such as functional analysis,
differential geometry or the theory of nonlinear differential equations. Except some special
cases such as Riccati equations and equations with elliptic integral, a general solution can
be difficultly found. Instead, individual procedures are applied, which are often improper
and too complex for engineering practice. This is the reason why a series of approximate
procedure are in use, in order to get some necessary knowledge about the system’s dynamic
properties. With such approximate procedures, nonlinear characteristics of real elements
are substituted by idealized ones, which can be described mathematically.

Current procedures for the analysis of nonlinear control systems are classified into two
categories: exact and approximate. Exact procedures are applied if approximate procedures
do not yield satisfying results or when a theoretical basis for various synthesis approaches
is needed.

The nonlinear control systems comprises two basic problems:
(1) Analysis problem consists of theoretical and experimental research in order to find

either the properties of the system or an appropriate mathematical model of the system.
(2) Synthesis problem consists of determining the structure, parameters, and control

system elements in order to obtain desired performance of a nonlinear control system.
Further, a mathematical model must be set as well as the technical realization of the model.
Since the controlled object is usually known, the synthesis consists of defining a controller
in a broad sense.

12.1.2 Basic specific properties of nonlinear control system

Some common properties of nonlinear control system are given out in the following:
1.Unbounded reaction in finite time interval
The output signal of an unstable linear system increases beyond boundaries, when
t . With a nonlinear system, the output signal can increase indefinitely in finite time.

For example, the output signal of the nonlinear system described by the differential

equation of the first order 2xx 


with initial condition   00 xx  tends to infinity for

01 xt  .

2.Equilibrium state of nonlinear system
Linear stable systems have one equilibrium state. For example, the response of a linear
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stable system to unit pulse input is damped towards zero.
Nonlinear stable systems may possess several equilibrium states, i.e., a possible

equilibrium state is determined by a system’s parameters, initial conditions and the
magnitudes and forms of external excitation. Hence, equilibrium state of nonlinear system
is very complicated.

Example12.1 Dependency of equilibrium state on initial conditions

The first-order nonlinear system described by      txtxtx 2


with initial

conditions   00 xx  , has the solution(trajectory) given by

  t

t

exx
extx 






00

0

1

Depending on initial conditions, the trajectory can end in one of two possible
equilibrium states 0ex and 1ex , as shown in figure12.1.

Figure12.1 State trajectories of a nonlinear system in example12.1
For all initial conditions   10 x , the trajectories will diverge, while for   10 x they

will approach the equilibrium state 0ex . For   10 x the trajectory will remain

constant 1x , t , and the equilibrium state will be 1ex . Therefore, this nonlinear

system has one stable equilibrium state  0ex and one unstable equilibrium state, while

the equilibrium state 1ex can be declared as neutrally stable. The linearization o this

nonlinear system for 1x (discarding nonlinear term) yields    txtx 


with the

solution(state trajectory)     textx  0 . This demonstrates that the unique equilibrium state

0ex is stable for all initial conditions, since all the trajectories-notwithstanding initial

conditions-will end at the origin.
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3.Self-oscillations-Limit cycles
The possibility of oscillation without damp in a linear time-invariant system is linked

with the existence of a pair of poles on the imaginary axis of the complex plane. The
amplitude of oscillations is in this case given by initial conditions.

In nonlinear systems it is possible to have oscillation with amplitude and frequency
which are not dependent upon the value of initial conditions, but their occurrence depends
upon these initial conditions. Such oscillations are called self-oscillations(limited cycles)
and they belongs to one of several stability concepts of the dynamic behavior of nonlinear
systems.

4.Subharmonic harmonic or periodic and oscillatory process with harmonic inputs
In a stable linear system, a sinusoidal input causes a sinusoidal output with the same

frequency. A nonlinear system under a sinusoidal input can produce an unexpected
response. Depending on the type of nonlinearity, the output can be a signal with a
frequency which is
 generally proportional to the input signal frequency,
 higher harmonic of the input signal frequency,
 -a periodic signal independent of the input signal frequency, or
 -a periodic signal with the same frequency as the input signal frequency.
With the input harmonic signal, the output signal can be a harmonic, subharmonic or

periodic signal, depending upon the form, the amplitude and the frequency of the input
signal.

5.Dynamic performance is not unique
In some cases, in a nonlinear system a pulse excitation provokes a response which

tends to one or more stable equilibrium states under certain initial conditions.
6.Resonance jump
Resonance jump was investigated more in the theory of oscillation of mechanical

system than in the theory of control systems. The term ”resonance jump” is used in case of
a sudden jump of amplitude and/or phase and/or frequency of a periodic output signal of a
nonlinear system. This happens due to nonunique relation which exists between periodic
forcing input signal acting upon a nonlinear system and the output signal from that system.
It is believed that resonance jump occurs in nonlinear control systems with small stability
phase margin, i.e. With small damping factor of the linear part of the system and with
amplitudes of excitation signal that force into the operating modes where nonlinear laws
are valid, particularly saturation. Resonance jump can occur in nonlinear system operating
in forced oscillation mode and is often not a desired state of the system. Resonance jump
can not been seen from the transient response of the system and can not be defined by
solving nonlinear differential equations. It is also not recommended to use experimental
tests in plants during operation in order to resolve if system might have this phenomenon.
To reduce or eliminate the resonance jump, higher stability phase margin is needed as well
as the widening of the operating region of a nonlinear part of the system where the linear
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laws are valid.
7.Synchronization
When the control signal is a sinusoidal signal of small amplitude, the output of a

nonlinear system may contain subharmonic oscillations. With an increase of the control
signal amplitude, it is possible that the output signal frequency”jumps” to the control signal
frequency, i.e., synchronization of both input and output frequencies occurs.

8.Bifurcation
If there exist points in the space of system parameters where the system is not

structurally stable, such points are called bifurcations points, since the system’s
performance”bifurcates”. The values of parameters at which a qualitative change of the
system’s performance occurs are called critical or bifurcational values. The theory which
encompasses the bifurcation problems is known as bifurcation theory(Gucken heimer and
Holmes.1983).

If the bifurcation points exist in a nonlinear control system, it is very important to
know the regions of structural stability in the parameter plane and in the phase plane and it
is necessary to ensure that the parameters and the states of the system remain within these
regions. If a bifurcation appears in nonlinear control system, the system can come to a
chaotic state-this is of mostly theoretical interest since for safety reasons every control
system has built-in activities which prevent any such situation. The consequence of
bifurcation can be the transfer to a state with unbounded behavior. For the majority of
technical systems this can lead to serious damages if the system has no built-in protection.

9.Chaos
In stable linear systems, small variations of initial conditions can result in small

variations in response. Not so with nonlinear systems-small variations of initial conditions
can cause large variations in response. This phenomenon is named chaos. It is a
characteristic of chaos that the behavior of the system is unexpected, an entirely
deterministic system which has no uncertainty in the modes of the system, excitation or
initial conditions yields an unexpected response. Some mechanical systems as well as some
electrical systems possess a chaotic behavior.

A chaotic system is one where trajectories present aperiodic behavior and are critically
sensitive with respect to initial conditions. Here aperiodic behavior implies that the
trajectories never settle down to fixed point or to periodic orbits. Sensitive dependence with
respect to initial conditions means that very small differences in initial conditions can lead
to trajectory that deviate exponentially rapidly from each other.

In nonlinear system, general functions have single-valued nonlinear functions
 xfy  , time-varying nonlinear functions  xtfy , and multi-valued nonlinear

characteristic functions which can be combined from elements with single-valued nonlinear
characteristic and from the linear part of the system.
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12.2 Linearization of Nonlinear Control System

12.2.1 Analysis on small deviation from nominal solution

Consider the general nonlinear state variable model in equation(12.1)

 tuxfx ,,


,  tuxhy ,, (12.3)

Suppose that a nominal solution    tutx nn , , and  tyn on equation(12.3) is known.

The difference between these nominal vector functions and some slightly perturbed
functions    tutx , and  ty can be defined by

   
   
   










tytyy
tutuu
txtxx

n

n

n





(12.4)

Then equation(12.3) can be written as

 

  termsorderhigheru
u
fx

x
ftuxf

tuuxxfxx

nn
nn

nnn


























,,

,,
(12.5a)

 

  termsorderhigheru
u
hx

x
htuxh

tuuxxhyy

nn
nn

nnn

























,,

,,
(12.5b)

Here  n means the derivatives are evaluated on the nominal solutions. Since the

nominal solutions satisfy equation(12.3), the first terms in the preceding Taylor series
exapansions cancel. For sufficiently small ux  , and y perturbations, the
higher-order terms can be neglected, leaving the linear equations

u
u
fx

x
fx

nn

 


















(12.6a)

u
u
hx

x
hy

nn

 















 (12.6b)

If   constxtx en  and if    tutun  0 , then the stability of the equilibrium

point ex is governed by

x
x
fx

n

 










(12.7)

For this case, the Jacobian matrix  xf  is constant matrix and its eigenvalues

determine system stability in the neighborhood of ex . If all eigenvalues i have negative

real parts, the equilibrium point is asymptotically stable for sufficiently small perturbations.
If one or more eigenvalues have positive real parts, the equilibrium point is unstable. If one
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or more of the eigenvalues are on the j axis and all others are in the left-half plane, no
conclusion about stability can be drawn from this linear model. Whether the actual
behavior of the system is divergent or convergent will depend upon the neglected
higher-order terms in the Taylor series expansion. Thus, except for the borderline j axis
case, stability of the nonlinear equation(12.3) is the same as the linearized model
equation(12.6), at least in a small neighborhood of the equilibrium point.

Example12.2 Please find the equilibrium points for the system described by the
following differential equation:

  05.021 3 


yyyyy
Then evaluate the linearized Jacobian matrix at each equilibrium point and determine

the stability characteristics from the eigenvalues.
Solution

Letting yx 1 and


 yx2 gives the state variable equation

   xf
xxxx

x

x
xx 






















 




21
3
11

2

2

1

15.02

Equilibrium point are solutions of   0xf , hence have

02 x , 05.02 3
11  xx

Three solutions(equilibrium points) of above equation set are











0
0

1ex , 









0
2

2ex , 









0
2

3ex

The Jacobian matrix is















































1
2
1

2

2

1

2

2

1

1

1

15.12
10
xx

x
f

x
f

x
f

x
f

x
f

Therefore, for  Tex 001  , the Jacobian matrix is















 12
10

1exxx
f

Its eigenvalues are 11  and 22  , so that this point is a saddle point.

For  Tex 022  , the Jacobian matrix is















 34
10

2exxx
f

Its eigenvalues are   27321 j， , so this point is a stable focus.

For  Tex 023  , the Jacobian matrix is
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













 14
10

3exxx
f

Its eigenvalues are
2
151

21
j

， , so this point is an unstable focus. If this system

has initial conditions exactly at any one of the three equilibrium points, the state will
remain there indefinitely in the absence of disturbances. For any other initial condition the

state will eventually settle to  Tx 02 .

If a time-varying nominal solution       tytutx nnn ,, is used(perhaps as obtained

from numerical solution of equation(12.3)), then the Jacobian matrices of equation(12.6)
will be also time-varying in general. The stability of linear time-varying systems is not as
straightforward as the linear, constant case.

With  tu restricted to zero, equation(12.6) can be used to investigate the passive

behavior of perturbed trajectories. It is of interest to know whether a trajectory  tx will

passively return to  txn (i.e., asymptotic stability ) or will remain within some bounded

neighborhood of it(i.e., stability) or will diverge from it(i.e.,unstable). These types of
analysis must always be used with caution because of the assumptions made regarding
 tx remaining small.

Figure12.2 A typical implementation of small deviation of system variable x
The input perturbation  tu can be used to actively control the behavior of  tx ,

thus force it to return to and remain at or near zero. Then the linearizing assumption that
 tx is small can be made somewhat self-fulfilling. A linear feedback control law, such as

   txKtu   , can be used, and a typical implementation is shown in figure12.2. The
overall goal is to maintain the trajectory near the known, pre-computed nominal in spite of
initial condition perturbations or input disturbances. The gain matrix K in the control law
could be computed using pole assignment techniques(see section6.4). If the closed-loop
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poles are forced to be sufficiently stable, then  tx will rapidly return to zero after any
upset. Alternatively, the gain matrixK could be found as the result of an optimal regulator
design problem.

12.2.2 Dynamic linearization using state feedback

In section12.2.1 we discuss the local linearization of a nonlinear system. In this
section, we consider the problem of synthesizing a control input  tu , which will cause the
following system to have a response which matches some specified template system.

 tuxfx ,,


(12.8)

That’s to say, let    tCxty  . It is desired that system output response  ty matches
as closely possible as the response of the specified template system

 tyygy dd ,,


(12.9)

In a typical example, the g function can specify a linear system with  tv being
perhaps a step function input and with the response possessing certain desirable transient
characteristics.

GvFyy dd 


(12.10)

If a control input  tu can be found to achieve the goal dyy


 , then the original

system will behave as a linear system. This is what we term dynamic linearization.
Define the error      tytCxte d , and then

         tvygtuxCftytxCte dd ,,,, 


(12.11)

Assume that unitEC  (unit matrix). When


e is set to zero, it may be possible to

solve the resulting equation for the unknown input u in terms of known or measurable
quantities dyx, and v . If this is accomplished, the feedback-modified system will have

the same derivative as the template system. If the template system is linear, then the
original system will have been linearized. In nature, the nonlinearities of the original
system are canceled and replaced by the desired linear terms. This form of dynamic
linearization has been known for many years.

Example12.3 It is desired that the first-order nonlinear system

xuuxx 


It behaves like the following linear system with initial condition   100 dy

dd yy 


Solution
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For this scalar system let    txty  (namely error is zero). Setting dyx


 leads to

     
 tx

tytxtu d





1



provided   1tx .
At least two potential problems exist with this scheme:
(1) even if the derivatives can be made to match exactly, the initial condition  0x

may not match  0dy for a variety of reasons. The exact initial conditions may not be

known due to measurement error, or the desire may be to have the system respond like the
template system regardless of its initial value  0x . Of course, matching derivatives does
not mean matching response curves. This will be addressed in the sequel.

(2) The resulting control law for  tu has a singularity at   1tx . An infinite
amount of control would be required at this point. Forcing a nonlinear system to respond
like a linear system generally means that components must be overdesigned to allow the
avoidance of nonlinear behavior. The singularity of this example is an extreme case.

In the following we will discuss the problem of initial condition mismatch, either
deliberate or unintentional which can be addressed by adding a convergence factor

matrix S . Instead of setting 0


e , we require that

See 


(12.12)
In a similar manner to the development for state observers in Chapter6, the matrix S

is specified with asymptotically stable eigenvalues. Then   0te , and thus

   tytCx d at a rate controlled by choice of convergence factor matrix S . The equation

for finding the control  tu is thus

        tytCxStvygtuxCf dd  ,,,, (12.13)

The existence of a solution of equation(12.13) for  tu can be established in certain
cases by using the implicit function theorem, which establishes sufficient conditions on the
function  tuxf ,, . The solvability is also influenced by the number of independent
equations that need to be satisfied relative to the number of unknown control components.
This explains the existence of the matrixC . It will not generally be possible to match all n
components of state variable x to an n -dimensional dy vector when there are only

nr  components in the control vector u . For any specific problem, a direct attempt to
solve for u will often be the most expedient method of determining whether or not such a
solution can be found, and this is the approach presented in the example problems.
Assuming the existence of a solution, the control law will be of the feedback form

        SCtvtytxutu d ,,,, (12.14)

And the procedure is obviously a model-matching or mode-tracking scheme, as shown
in figure12.3.
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Figure12.3 Model-matching block diagram
Note that when a linear system is used as the template, then equation(23.14) becomes

      GvSCxySFyCxSGvFytuxCf ddd ,, (12.15)

If the convergence matrix S is selected equal to F , then dy is not directly required,

and the need to synthesize the template system is removed. If matrix 0S is selected, a
major feedback path is eliminated. Then equation(12.15) becomes

  GvFytuxCf d ,, (12.16a)

When FS  , equation(12.15) becomes
  GvFCxGvSCxtuxCf ,, (12.16b)

Example12.4 The scalar system of example12.3 is reconsidered, but now the
convergence factor matrix S is included so that for all initial conditions,    txx ,0 will

ultimately approach the desired response Seyxe d 


, where S is a negative real

number. Then
 dd yxSyxuux  

From which, if   1tx ,

        
 tx

ytxtytxStu dd





1



Substituting this back into the system equation gives the coupled pair

 



































dd
y
xSS

y
x




0

The above 22 transition matrix is easily found:

  






 






t

SttSt

e
eee

t





0

0,

Then the system output response is
         St

dd
t eyxyetx 000  

This is the desired template response,  0d
t ye  , plus an initial condition mismatch

term, which dies out at a rate determined by the convergence factor matrix S . If S ,
this term will quickly die out, leaving the desired response.
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Besides small deviation and state feedback methods, we can also utilize the describing
function method to describe the nonlinear system. Other linearization methods in nonlinear
system have graphical linearization, harmonic linearization, statistical linearization, least
square, and so on. If readers are interested in these given methods, readers may consult
related control books.

12.3 Stability, Controllability and Observability

Stability, controllability and observability have been narrated to analyze the state of an
linear system in previous chapters. In Chapter4, many contents on stability can be applied
into nonlinear system such as Lyapunov stability criterion and so on. Because present
nonlinear theory is not mature at present, we only coarsely demonstrate related topics th

12.3.1 Nonlinear system stability

1. Stability of a nonlinear system based on stability of the linearized system
Stability of a nonlinear system can be analyzed through the stability of a linearized

one, but caution must be taken. The linking of the equilibrium states of a linearized system
and the original nonlinear system can be seen in an example of an unforced system of
second order with equations.

 

 












2122

2111

,

,

xxfx

xxfx
(12.17)

Linearizing the nonlinear system in the vicinity of the equilibrium state, and
considering the behavior of the obtained linear system, it is possible—except in specific
situations — to analyze the behavior of the nonlinear system in the vicinity of the
equilibrium state. Supposing that the equilibrium state of the nonlinear system by
equation(12.17) is at the origin , and that 1f and 2f are continuously differential near the

o    TT
ee xx 0021  origin (equilibrium point), then the Taylor expansion near the origin

gives

       
 211212111

21121211112111

,
,0,0,

xxrxaxa
xxrxaxafxxftx






(12.18a)

       
 212222121

21222212122122

,
,0,0,

xxrxaxa
xxrxaxafxxftx






(12.18b)

Here,  211 , xxr and  212 , xxr are higher-order terms of the Taylor series or

remainders. As the equilibrium point at the origin is   00,01 f and   00,02 f , the
linearized model follows:
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2121111 zazaz 


(12.19a)

2221212 zazaz 


(12.19b)
Or

   tAztz 


(12.20)
Here:

2,1,,,
02221

1211 



























ji
x
fa

aa
aa

A
xj

i
ij ;  Tzzz 21

The analytical procedure of linearization is based on the fact that if the matrix A has
no eigenvalue with   0ieR  , the trajectories of the nonlinear system(12.17) in the

vicinity of the equilibrium state    TT
ee xx 0021  have the same form as the trajectories

of the linear system(12.19) in vicinity of the equilibrium state    TT
ee zz 0021  .

Table2.1 shows the types of equilibrium states(points) that are determined from the singular
points.

Table12.1: Types of singular points of a nonlinear and a linearized system
Eigenvalues( i ) of linear

system(2.19)
Equilibrium state  Tee zz 21

of linear system(2.19)

Equilibrium state  Tee zz 21

of nonlinear system(2.17)
Real and negative Stable node Stable node
Real and positive Unstable node Unstable node
Real of opposite sign Saddle Saddle
Conjugate complex with
negative real part

Stable focus Stable focus

Conjugate complex with
positive real part

Unstable focus Unstable focus

Imaginary(single) Center Undefined
If the equilibrium state of the linearized mathematical model(12.19) is of the type

center, then the linearized system oscillates with constant amplitude. The behavior of the
trajectory of the original nonlinear system(2.17) is determined by the remainder of Taylor
series  211 , xxr and  212 , xxr that were neglected during the linearization process.
Analysis of the linearized system alone gives in this case no final answer about the
behavior of the nonlinear system. In order to clarify this situation, the following example is
given here.

Example12.5 A oscillator is described by the following nonlinear differential
equation:

    0;01 2 


consttyyyy 

After choosing the state variables yx 1 ,


 yx2 the state-space equation is
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 

    












2
2
112

21

1 xxxtx

xtx



Linearization at the equilibrium point    TT
ee xx 0021  gives

 

  












212

21

zztz

ztz



And linearized matrix A :












1
10

A

Eigenvalues of the matrix can be gained from the characteristic equation:

012  ,
2

42

21





，

If 0 , the eigenvalues have a positive real part, and the equilibrium point of the

linearized mathematical model    TT
ee zz 0021  is of the unstable focus. The original

nonlinear system will have an equilibrium state ate the origin    TT
ee zz 0021  of the

unstable focus.
2. Absolute stability of equilibrium state of unforced system
Absolute stability of nonlinear control systems was firstly published in 1944. Lur’e

and Postinkov had researched nonlinear systems with a continuous single-valued nonlinear
characteristic which passes through the first and third quadrants in 1944. M.A. Aizerman
formulated the problem of absolute stability when the nonlinear characteristic is within a
sector-in 1947 the established a hypothesis whereby the stability of nonlinear system may
be analyzed with linear procedures. The Romanian mathematician V.M. Popov in 1959
proposed a fundamentally new approach to the problems of absolute stability — he
established necessary conditions which the amplitude-frequency characteristic of the linear
part of the system must fulfill, so that the nonlinear system will be absolutely stable. This
frequency immediately found the approval of engineers to whom the frequency approach
was familiar. In fact, the concept of absolute stability means a global asymptotic stability of
the equilibrium states in the Lyapunov sense.

The structure of the nonlinear system in problems of absolute stability is given in
figure12.4. In the direct branch is the linear time-invariant system, while in the feedback
branch is a single-valued nonlinearity (nonlinear element without memory), which means
that the feedback performs nonlinear static mapping of the signal 2e to the signal Ny .

The signal 1r may represent a reference signal, while the signal 2r may represent an error
signal, for example measurement noise. In the case that the transfer function of the linear
part is strictly proper  0D and 021  rr , the system in figure12.3 can be
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mathematically described by

Figure12.4 Structure diagram of nonlinear system in the analysis of absolute stability

 yBFAxx 


(12.21a)
Cxy  (12.21b)

In equation(12.21), 2ey  and  yFye N 1 . Many automatic control systems

can be represented with this structure. If the system acts in a stabilization mode(which is in
nature a regulator problem), the structure from figure12.4 can be simplified to the structure
in figure12.5. If the nonlinear function  yF belongs to the sector  21, kk and if the
linear part of the system is stable, people possibly ask what additional condition is
necessary for nonlinear system?

Figure12.5 Structure diagram of unforced nonlinear system
As the nonlinear characteristic is in the sector  21, kk , that means it is bounded by

two straight line which intersect at the origin—this corresponds to feedback with constant
gain— it is normal to suppose that the stability of the nonlinear system will have certain
similarities with the stability of the system which is stabilized by the gain in the feedback
loop. Contrary to the stability analysis at present, people’s interest is not in a specific
system, but in the whole family of system, as  yF can be any nonlinear function inside

the sector  21, kk . This is the reason why this is called the problem of absolute stability in
the sense that if the system is absolutely stable, it is stable for the whole family of
nonlinearities in the sector  21, kk .

In 1949, M.A.Aizerman considered this problem and established the following
hypothesis. If the system described by
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   
 

  1;
1
1

1
1

1
1 




 



 nm
sasa
sbsbK

sA
sBsG n

n
n

n

m
m

m
mL

L 
 (12.22)

then the system in equation(12.22) is globally asymptotically stable for all linear mappings
given by

   21,,,, kkkytkyytF  (12.23)

Here, the gain k of the linear feedback is inside the interval  21, kk , then the same

is true for all time-invariant nonlinear system with a single-valued static characteristic  yF

inside the sector  21, kk . In other words, if the nonlinear feedback is replaced by a linear
proportional feedback and if we obtain a closed-loop system globally asymptotically stable
for all values of the linear gain inside  21, kk , then the nonlinear system which possesses a
nonlinear feedback is globally asymptotically stable if the static characteristic of the
nonlinear element is inside the sector  21, kk . This attractive hypothesis is not valid in the
general case. R.E.Kalman(1957) has proposed a similar hypothesis which assumes that
 yF belongs to the incremental sector  21, kk . The set of nonlinearities in the

incremental sector is smaller than the set of nonlinearities treated by Aizerman so the
Kalman hypothesis has greater probability to be correct.

Nonlinear systems with the structure shown in figure12.6 will be considered further.
The linear part of the system can be stable, unstable or neutrally(critically) stable, with the
transfer function expressed in equation(12.22).

Nonlinear part may be the following cases
(1) Single-valued time-invariant nonlinear element     txFtyN  ,

(2) Single-valued time-varying nonlinear element     txtFtyN , ,

(3) Double valued time-invariant nonlinear element      







txtxFtyN ,

Besides the above-mentioned nonlinear elements, there appear:
(4) Linear time-varying element    txtkyN  ,

(5) Linear time-invariant element  tkxyN  .

Figure12.6 Basic structure of a nonlinear system for analysis of absolute stability with
external signals  tr and  tw

All these elements must have static characteristic inside the sector  21, kk for all
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0t , where  210 kk .
In closed-loop control system, the classical nonlinear characteristics are listed in

table12.2 to aid readers to understand common nonlinear element of nonlinear system.
Table12.2 Classical nonlinear characteristics in closed-loop control system

1. Saturation characteristic
Math description:

















axM
axkx
axM

y

Characteristic: when input signal is very
small, element work in a linear area; when
input signal exceeds the linear area, system
output takes on saturation state.

2. Dead zone characteristic
Math description















axaxk
axaxk
ax

y
)(
)(

0

Characteristic: when input signal is very
small, there is no output signal; when input
signal is over the range of dead zone, system
output changes as the change of input signal.

3. Hysteresis(backlash) characteristic
Math description









0
0)(

ysignxb
yxasignxk

y



Characteristic: when input signal is very
small, output is zero; when input is greater
than a , output is proportional to input.
When input is inverse, output keeps constant;
output is not linear change until   atr  .

4. Relay characteristic
Math description









axb
axb

y

Characteristic: double-position, dead-zone,
backlash characteristic. Phase-plane and
describing function methods can be utilized
to analyze the affect of relay nonlinear
characteristic to system performance.
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The reference signal  tr and disturbance signal  tw act on the closed-loop nonlinear

system. The total input signal to the system is therefore      twtrtf  . The dynamics of
the closed-loop nonlinear system in figure12.6 can be described by the differential
equation:

       xFpGtftx L (12.24)
Or by the following integral equation

        
t

dxFtgtftx
0

 (12.25)

Here  tg is the weighting function of the linear part of the system,  tf is the total

external signal acting on the control system,  xF is a mathematical description of

nonlinear element of the system and dtdp  is a derivative operator.

Figure12.7 Equivalent structure of nonlinear system in the case of unstable linear part
Absolute stability of the equilibrium of the system in figure12.6 is best treated by the

frequency criterion of V.M. Popov who gave out the judgment criterion. If you want to
apply Popov’s criterion to nonlinear control system, this system must be time-invariant and,
moreover, the linear part of the system  sGL is stable. In the case when the linear part is
unstable, the system’s structure is replaced by equivalent structure shown in figure12.7. As
is evident from the block diagram, the unstable linear part of the system is stabilized with
the linear operator rK in the negative feedback loop. The same linear operator is placed in
parallel with the nonlinear element, so that the influence of the stabilized feedback on the
dynamics of the closed-loop system is eliminated. Equivalent external actions(reference
input and disturbance), equivalent nonlinear element and equivalent linear part of the
system are given by the following expression:

       
 

 
 pGK

pW
pGK

pRtwtrtf
LrLr

EEE 





11
(12.26a)

   
 pGK

pGpG
Lr

L
E 


1

(12.26b)

    xKxFxF rE  (12.26c)

Here, rK is a stable linear operator which stabilizes the otherwise unstable linear

part of the system  sGL .
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In the following, systems with a stable linear part in figure12.6 and systems with
equivalent structure in figure12.7 will be discussed. The external actions on the
system      twtrtf  can be divided into two groups:

(1) Bounded external actions  tf1 described by the following equations:

  0;11  tMtf (12.27)

This function can represent reference and other disturbance inputs.
(2) Vanishing(time-decreasing) external actions  tf2 described by the following

expressions:

  0;
0 22 


tMdttf (12.28a)

  0lim 2 


tf
t

(12.28b)

which represent initial conditions different from zero.
Dynamics of the system in figure12.6 which was at rest up to the moment 0t , when

the external signal      tftftf 21  was applied, are described by the following integral
expression

           dxFtgtftftx
t

 
021 (12.29)

In order to find the absolute stability of the solution(12.29), it is appropriate to look
separately at the equilibrium states of the forced system(   01 tf ) and those of the

unforced one(   01 tf and   02 tf ).

In the case when only a vanishing external action  tf2 acts on the nonlinear system,

the absolute stability(global asymptotic stability) of the equilibrium state ex of the

unforced system is considered. The solution(a zero-input response)  txzi will be

asymptotically stable if
  constMtxx xzite 


lim (12.30a)

Or
  0lim 


txx zite (12.30b)

It must be stressed here that in the case when a stable nonlinear system has the
nonlinearity of the type dead zone in table12.2, its equilibrium state   axzie xMxx 

may belong to any part of the dead zone(part of the stability), i.e., the nonlinear system can
possess an infinite number of equilibrium states, so the condition of asymptotic
stability(12.30) can not be applied. Therefore it is more appropriate to consider the
equilibrium state as stable if the following condition is satisfied:

  0lim 
 ezit

xtx (12.31)

Here,   xzie Mxx  is any value inside the dead zone axa xMx  . In

accordance with the definition of asymptotic stability(12.31), we distinguish the local
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asymptotic stability—when condition(12.31) is satisfied for small deviations  tf2 from

the equilibrium state, and global asymptotic stability — when the condition(12.31) is
satisfied for large deviations  tf2 from the equilibrium state.

Contrary to linear systems where local asymptotic stability assures global asymptotic
stability, in nonlinear systems local asymptotic stability may exist, but not a global one.

Generally, two approaches to the problem of stability are possible. The first method is
to find the solution of the differential(12.24) or integral(12.25) equation, which is in
practice not applicable because of well-known difficulties. The second one is to determine
the stability conditions without the inevitable quest for the solution of the dynamic
equations of the system. This approach is necessary because of the fact that quite often the
nonlinear characteristic  xFyN  can not be determined. Namely, the dynamics of the

nonlinear system are changing with the change of operating conditions. For example,
change of the load or of the supply energy of the control mechanism results in deformity of
the static characteristic, which greatly complicates the exact determination of values of the
parameters of a differential or integral equation of the nonlinear system.

The static characteristic of many actuators of modern control systems can be regarded
as nonlinear functions with the following properties:

  0,0  xxxF (12.32a)

  00 F (12.32b)

Here,  xF is a continuous function:

  


dxxF
0

(12.33)

Nonlinear functions with the properties of equations(12.32) and (12.33) can have very
different graphical presentations. For nonlinear system given in figure12.6,the
characteristic of the nonlinear element is situated within the sector bounded by xk1 and

xk2 :
  0;21  xk
x
xFk (12.34)

If the nonlinear function  xF is located in the sector  21, kk and fulfills the
conditions(12.32) and (12.33), the global asymptotic stability of the system with the
function  xFyN  is called absolute stability. Very often the nonlinear functions can be of

the class  2,0 k and  0 which result from(12.32) for 01 k and for 01 k ,

2k .
3. Absolute stability of equilibrium state of unforced nonlinear system
The Romanian mathematician V.M.Popov formulated in 1959 frequency criterion of

the absolute stability of a time-invariant unforced nonlinear system which has the structure
in figure12.6. With       0 trtwtf ， a system is described, and a vanishing external

quantity    tftw 2 (initial condition) which satisfies conditions (12.28a) and (12.28b) is
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applied. The time-invariant linear part of the system has a stable equilibrium state, while
the nonlinear functions of the class  20 k， that satisfy conditions (12.32) and (12.33). It
is:

  00 F (12.35a)

  0;0  xxxF (12.35b)

  


0

dxxF (12.35c)

  0;21  xk
x
xFk (12.35d)

The Popov criterion of absolute stability for an unforced nonlinear system which has
only the vanishing external quantity  tf2 , or the initial condition which differs from zero,
and shown in the block diagram in figure12.6, is formulated as follows:

Theorem12.3.1: Popov criterion of absolute stability— LG stable

The equilibrium state of an unforced nonlinear control system of the structure as in
figure12.6 will be globally asymptotically stable—absolutely stable if the following is true:

(1) Linear part of the system is time-invariant, stable and completely controllable.

(2) Nonlinear function  xF is of class  20 k， with  20 k and satisfies
condition(12.35a)~(12.35d).

(3) There exist two strictly positive real numbers 0q and an arbitrarily small

number 0 , such that for all 0 the following inequality is true(Popov, 1973):

     011Re
2

 
k

jGjq L (12.36)

Or,

     011Re
2


k

jGjq L  (12.37)

Here,
  0lim;2 





jGk L (12.38)

The Popov criterion enables the relatively simple determination of the stability of the
nonlinear system, based on knowledge of the sector where eventually the nonlinear static
characteristic lies and based on knowledge of the frequency characteristic of the linear part
of the system. There are special cases which allow the linear part to have one or two poles
at the origin. In such cases—besides inequality(12.36) and (12.37)—the following must be
used:

(1) When  sGL has one pole at the origin

   





jGLImlim
0

(12.39)

(2) When  sGL has two poles at the origin:
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   





jGLRelim
0

(12.40)

For small  ,    0Im jGL .
The inequality(12.36) or (12.37) is called the Popov inequality. Here it must be

emphasized that the Popov criterion gives only the sufficient condition for stability. Its
importance lies in the fact that the stability of the nonlinear system can be evaluated on the
basis of the frequency characteristic of the linear part of the system, without the need for
seeking a Lyapunov function. The criterion is constrained by the requirement that the
nonlinear static characteristic must be single-valued and that it lies in the first and third

quadrants  01 k —it must pass through the origin.

When the nonlinear element
     







txtxFtyN ,
is single-valued and time

-varying, it is necessary to put 0q into equation(12.37). For double-valued

time-invariant nonlinear elements
     







txtxFtyN ,
, the value 0q in

equation(12.37) is also used.
In the analysis and the synthesis of nonlinear control systems of the proposed structure

in figure12.6, the most appropriate procedure is the geometric interpretation of the criterion
of absolute stability as it enables the treatment of nonlinear systems by applying frequency
methods which were developed in the theory of linear control systems.

In order to determine q which satisfies criterion(12.37), V.M.Popov has proposed a
geometrical interpretation of the analytic condition, so that instead of the frequency
characteristic of the linear part of the system  jGL , a modified frequency characteristic

 jGp —the Popov characteristic or Popov polt—is used.

            pLLp jVUjGjjGjG  ImRe (12.41)

Here,     VjVp  is the imaginary part of the Popov characteristic.

Replacing equation(12.41) into equation(12.37) gives the criterion of absolute stability
which include the Popov plot  jGp :

      01ImRe
2


k

jGqjG pp  (12.42)

Or

    01

2


k

VqU  (12.43)

The boundary value(12.43) is the equation of the straight line-Popov line:

   
2

1
k

VqU   (12.44)

The Popov line in the  sGp plane passes the point  0,1 2 jk with the slope q1 .
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The condition of absolute stability(12.37) is satisfied if the position of the  jGp plot is

to the right of the Popov line, i.e., if the Popov line does not intersect the  jGp plot in

figure12.8. Comparing the Popov characteristics  jGp and frequency

characteristics  jGL of the linear part of the system, the following features can be
observed:

Figure12.8 Popov line does not intersect Popov curve-graphical condition of absolute
stability

(1)  jGp and  jGL intersect the real axis at the same point   .

(2)        pp VVjG Im is an even function of frequency  , while

     VjGL Im is an odd function of frequency ; the  jGp plot is not symmetric

with respect to the real axis, while  jGL plot is symmetric for   .

(3)  jGp plot starts for 0 always from the real axis of the complex plane,

while  jGL plot can have the starting point on the imaginary axis.

(4) If   0lim 





jGL ,  


jGp
lim can be equal either to zero or to some other final

value.
In cases when the Popov plot has a non-convex form, i.e., when it is of much more

complex form, the criterion of absolute stability is much more strict. critK of a convex plot

can be much greater than max2k of a non-convex plot, which could mean that the gain of

the nonlinear system with a convex Popov plot can be greater than that of the nonlinear
system which has a non-convex Popov plot.

Convex forms for Popov plots represent nonlinear systems where the linear part of the
system contains cascaded inertial and oscillatory terms and no more than one integral

component, with the condition that the damping ratio of the oscillatory terms is 22 .
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Convex plots  jGp also represent nonlinear systems with the following linear parts:

 
 

   

   

      22;4;121

5;1

6;1

;
;

1

121

1

11

1

1

1






































nsssTKsG

nsTKssG

nsTKsG

eKssG
KesG

n

i
iiiL

n

i
iL

n

i
iL

s
L

s
L

Instead of the inequality(12.43) which contains the variable quantities q and  , the

Popov criterion can be expressed by one variable quantity only—  .Then it is more
appropriate to determine 2k analytically:

  minmax (12.45)

Here

    









2

1arg
k

jGp 

max and min are maximal and minimal values of   in the region 0 .

  represents the argument of a complex number   21 kjGp  when 0 . For

some 1 ,  1 will be the angle of a phasor with the real axis, starting at the

point 21 k and with the peak at  1jGp . From equation(12.45) it is obvious that the

absolute stability of the nonlinear system can be determined without knowing the exact
value of the parameter q — it is enough to draw the Popov line through the

point  0,1 2 jk for at least one slope q with the condition that  q0 .
4. Absolute stability with unstable linear part
When the linear part of the system is unstable, it is necessary to accomplish its

stabilization with linear feedback in figure12.7. The equivalent transfer function of the
linear part of the system  sGE is then given by the following

   
       

    jjVjU
VKUK

Vj
VKUK
VKUKUjG EE

rrrr

rr
E 







 2222

2

11
1 (12.46)

The equivalent single-valued time-invariant nonlinear function must satisfy the
following conditions:

  00 EF (12.47a)

  0;0  xxxFE (12.47b)

  


dxxFE0
(12.47c)

  0;0  xK
x
xF

F
E (12.47d)
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Here, rF KkK  2 is the value of the new and smaller slope of the sector  FK，0

inside which the equivalent nonlinear function  xFE may be situated. rK is the
stabilizing linear operator in the feedback of the unstable linear part of the system.

For the system with unstable linear part, the absolute stability of the nonlinear system
is expressed by the following theorem:

Theorem12.3.2: Popov criterion of absolute stability— LG stabilized

The equilibrium state of an unforced nonlinear control system with the structure as in
figure12.7 will be globally asymptotically stable—absolutely stable if the following is true:

(1) The linear part of the system is time-invariant, stabilized(equivalent linear part of
the system is stable) and completely controllable.

(2) Time invariant single-valued nonlinear function  xFE is of the class  FK，0 .
(3) There exist two strictly positive numbers 0q and arbitrarily small number
0 such that for all 0 the following inequality is valid:

   011Re  
F

E K
Gjq (12.48)

Or

   011Re 
F

E K
Gjq (12.49)

Here,   0lim;;0 2 





jGKkKK ErFF

          EEjsEE jVUsGjG  

The graphical interpretation of theorem12.3.2 is the following:
Inserting expression(12.46) into the inequality(12.49) (Popov condition) — and

rearranging terms, the conditions for absolute stability are obtained, and graphical
interpretation is possible. From equations(12.46) and (12.49), we can get

      011
22

2 



F

rr
rr K

VKUKVqVKUKU  (12.50)

Or

      012 22 











FrrFrr

F

Frr

rF

KKK
V

KKK
qKVU

KKK
KKU  (12.51)

For 0 and 02 V , the inequality(12.51) can be quite well approximated by

       
FF

Fr

F

Frr
p qK

U
qK

KKU
qK

KKKV 122 





  (12.52)

Here, ;;0 2 rFr KkKK         jGVV pp Im . The inequality(12.52)

can be graphically interpreted in the following manner:
In order that the nonlinear system is absolutely stable, the Popov plot must be outside

of the parabola with peak at the point S with coordinates:
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 
   














rFr

F

rFr

rF

KKqK
K

KKK
KK 25.0,

2
2

12.3.2 Nonlinear system controllability

In this section, we will discuss the nonlinear system controllability on the basis of
Chapter5. Now let’s together consider smooth affine nonlinear control system:

 
  p

mn

Ryxhy
RuRxuxfx






,
,,, (12.53)

Here x is the state variable, y is the output, and u is the control.

In equation(12.53),  uxf , is a smooth mapping. In most cases it is assumed that

  00,0 f . Depending on the context”smooth” could mean CC r , or C

respectively. Mostly,  xh is also assumed to be smooth( as smooth as  uxf , ) with

  00 h . u can be assumed to be piecewise continuous or measurable or smooth as we

wish. (In fact, it does not affect the controllability and observability much) When  tuu  ,

it is called an open-loop control; when     yuuxuu  it is called a state
feedback(output feedback) closed-loop control.

Generally, the state, control and output spaces may be replaced by pandmn ,,
dimensional manifolds respectively.

A particular form of system(12.53) is affine nonlinear system, which is nonlinear in
state x and linear in control u . An affine nonlinear control system is generally described
as

       

  p

mn
i

m

i
i

Ryxhy

RuRxuxgxfuxgxfx



 




,

,,:
1 (12.54)

The affine nonlinear systems are the main object in this book. In fact, it is also the
main object of nonlinear control theory. In the geometric approach, the  xf and

  mixgi ,,1,  in system(12.54) are considered as smooth vector fields on nR .

Now consider system(12.54). The state space, M , is assumed to be nR or any path
connected n dimensional differentiable manifold. Let the control,  tu , be measurable
functions. For the ease of statement, we also assume that for any feasible control u the
vector field  uxf , is complete. Although this assumption is not necessary for the
following discussion on controllability, it serves the purpose of avoiding discussion of the
existence of solution over t .

Definition12.3.2.1
Consider system(12.53) and make Mx 0 . If the reachable set   MxR 0 , the
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system(12.53) is said to be controllable at 0x . If

  MxMxR  ,
the system(12.53) is said to be controllable.

In many cases it is difficult to get the global properties of a nonlinear system, hence
we turn to consider the local situation. As for local controllability, let Mx 0 and U be

a neighborhood of 0x . A point 1x is said to be U -reachable, if Ux 1 and there exists a

feasible control u and a moment 0T , such that the trajectory  tx satisfies

    10 ,0 xTxxx  and   TtUtx  0, .

The U -reachable set of 0x is denoted by  0xRU .

Definition12.3.2.2
Consider system(12.53) and let Mx 0 . If for any neighborhood U of 0x the

reachable set  0xRU is also a neighborhood of 0x , system(12.53) is said to be locally

controllable at 0x . If the system is locally controllable at each Mx , system(12.53) is

said to be locally controllable.
Neither controllability nor local controllability is symmetric with respect to any two

ending points. That is to say, for two given points Mxx 21, ,  12 xRx  does not mean

 21 xRx  . Similarly, there exists a neighborhood U of 1x such that  12 xRx U does

not mean  21 xRx U . We give a symmetric definition as follows:

Definition12.3.2.3
Assume Mxx T ,0 be given. If there exist Tk xxx ,,1  , such that or  1 ii xRx ,

or   kixRx ii ,,1,1  , then Tx is said to be weakly reachable form 0x .

The weakly reachable set of 0x is denoted by  0xWR . Similarly, we can define a

locally weakly reachable set as
Definition12.3.2.4
For system(12.53), Tx is said to be locally weakly reachable from 0x with respect

to a neighborhood, U , if there exist Tk xxxx ,,, 10  , such that the trajectories  txs
either from 1sx to sx , or from sx to 1sx , are contained in U , ks ,,1 .

The locally weakly reachable set of 0x with respect to U is denoted as  0xWRU .

Definition13.3.2.5
System(12.53) is weakly controllable at Mx 0 if the weakly reachable set

  MxWR 0 . The system is said to be weakly controllable if it is weakly controllable

everywhere, i.e.,   MtMxWR  , . The system is said to be locally weakly

controllable at Mx 0 , if for any neighborhood U of 0x the locally weakly reachable

set  0xWRU is still a neighborhood of 0x . If system(12.53) is locally weakly controllable
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at every Mx , the system is said to be locally weakly controllable.
Proposition12.3.2.1
If system(12.53) is locally weakly controllable, then it is weakly controllable.
Demonstration
For any two points Txx ,0 draw a path   10  ttpP , connecting 0x and

Tx . Using local weak controllability, for each point  tpx  , 10  t , there exists an

open neighborhood  xWRV Ux  . Then

PVxPx  

It is an open covering of the compact set P . Thus we can find a finite sub-covering

 kiV
ix

1 . By the symmetry of local weak controllability,

  kixWRx ii ,,0,1 

Here, Tk xx  :1 . Therefore,  0xWRxT  , which means that the system is weakly

controllable.
A point Tx is said to be reachable from 0x with negative time, denoted as

 0xRxT
 if there exists a feasible u and 0t such that    T

uxf
t xxe 0

, .

Proposition12.3.2.2
Assume the feasible controls are state feedback controls,  xuu  , which are

piecewise constant, then
   00 xWRxR  (12.55)

Demonstration
Assume  0xRxT  . That is to say,   0, xex uxf

tT  . Then   Tuxf
t xex ,

0  . Now

assume  0xRxT
 , namely there exist Tk xxx ,,1  , iiu , , such that

   kixxe ii
uxf i

i
,,1,0,1

,   . If  kki xRx  1,0 ; and if  1,0  kki xRx .

That is,  0xWRxT  . Similarly,  0xWRxT  implies  0xRxT
 .

In the following we assume that the feasible controls are piecewise constant.
Define a set of vector fields as

  constuuxfF  ,

Definition13.3.2.6
The Lie algebra generated by F ,  LAF is called the accessibility Lie algebra.

Consider  LAF as a distribution. If

    nxF LA 0dim

then it is said that the accessibility rank condition of the system(12.53) is satisfied at 0x . If

the accessibility rank condition is satisfied at every Mx , it is said that for system(12.53)
the accessibility rank condition is satisfied.
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Proposition12.3.2.3
System(12.53) is controllable, if (i)M is simply connected; (ii) all the vector fields in

F are complete;(iii) if FX  , then FX  ; and (iv) the accessibility rank condition is
satisfied.

Demonstration
Note that condition(iii) implies that

    MxxRxR  ,
Then the negative t is allowed. Using Chow’s theorem, the conclusion follows.
Example12.6 For an affine nonlinear system(12.54), if the drifting term   0xf , then

condition(iii) in the above proposition12.3.3 is satisfied automatically. Thus if M is
simply connected; migi ,,1;  are complete; and   ngg LAm ,,dim 1  , the

system is controllable.
In general, to verify controllability of a nonlinear control system is hard work. Thus

we consider some weaker types of controllability. Weak controllability and local weak
controllability are two of them.

We consider the relationship between weak controllability and accessibility rank
condition.

Theorem12.3.2.1
Consider system(12.53), if the accessibility rank condition is satisfied at 0x , the

system is locally weakly controllable at 0x .

Demonstration
Since    nFrank x 

0
, there exists a neighborhood U of 0x such that

   UxnFrank x  , . Now if   FXxX  ，00 , it is obvious that    0xFrank .

Therefore, there exists a Ff 1 such that   UUxxf  11 ,0 . Then we have an

integral curve,   1110 ,1

1
  txe ft ， which is a one dimensional sub-manifold, denoted

by 1L . We then claim that there exists a 1
0
11   t , and Ff 2 such that at

 12
0
1 1
, LTft x , where  01

1
0
1
xex f

t . Otherwise     11dim LxxF  . Now we

consider the mapping
   0122

1

1

2

2
:, xeett f

t
f
t

Since the following Jacobian matrix is nonsingular
      1112

0
1 ,1,0

2
xfxftJ 

locally this is a diffeomorphism from 22 t , 1
0
11 ett  to the image of 2 . The image

is a two dimensional manifold, denoted by 2L . Using the above argument again, we can

show that there exists 2
0
2 t and 1

0
1

0
1 ett  , such that for a    2233 2

, LTxfFf x ,
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where  02
1
0
1

2
0
2

xeex f
t

f
t . For notational ease, we still use 0

1t for
0
1t and define

   01233
1

1

2

2

3

3
,, xeeettt f

t
f
t

f
t

We obtain a three dimensional sub-manifold 3L this way. Continuing this procedure,

we can finally find Fff n ,,1  and construct a local diffeomorphism from a

neighborhood nV of   n
n Rtt 

0
1

0
1 ,,0 ， to a neighborhood nU of

 00
1
0
1

2
0
2

xeee f
t

f
t

fn .

     012212
1

1

2

2
:,,,, xeeettttt f

t
f
t

f
tnn
n

n
   (12.56)

In addition, we construct a diffeomorhism which maps nU back to a neighborhood of

0x . Finally, we define

    n
f
t

f
t

f
t UxxeeexG n

n
 


,1

0
1

2
0
2

1
0
1



Finally, we define the following expression which is a local deiffomorphism from nV

to a neighborhood of 0x .

  nn VttG  , ：

By definition
   0xWRV Un 

the system is locally weakly controllable at 0x .

Conversely, if the system is locally weakly controllable or even weakly controllable,
we would like to know whether that the accessibility rank condition is satisfied.

Proposition12.3.2.4
Assume that system(12.53) is locally weakly controllable, then there exists an open

dense set MD  such that the accessibility rank condition is satisfied on D , i.e.,
  DxnF

x
 ,dim

Proof. If the accessiblity rank condition is satisfied at a point 0x , then there is a

neighborhood,
0x

U of 0x , such that the accessibility rank condition is satisfied at all

0x
Ux . So, it is obvious that the set of points, D , where the accessibility condition is

satisfied, is an open set. Now assume D is not dense. Then there is an open set U ,
such that

  UxnF
x

 ,dim

Let k be the largest dimension of F on U , i.e.,
  nFk

xUx



dimmax

Then there exists a non-empty open subset UV  , such that
  VxkF

x
 ,dim

According to Frobenius’ theorem, for any Vx 0 , there exists an integral submanifold
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of  0,, xFIF , which has dimension k . It is obvious that

    VxFIxWAV  00 ,

which contradicts to the local accessibility of 0x .

For analytic case, accessibility implies the accessibility rank condition.
Proposition12.3.2.5
Assume system(12.53) is analytic and weakly controllable, then the accessibility rank

condition is satisfied, i.e.,
  MxnF

x
 ,dim

Demonstration
Assume

  MxnF
x

 ,dim

Then for any Mx 0 the integral sub-manifold has    nxFI 0,dim . But

   00 , xFIxWA 

It contradicts with weak controllability. Hence there is at least one point Mx 0 ,

such that
  nF

x


0
dim

Next we claim that if the system is weakly controllable, then for any two points
Myx , ,

   
yx

FF dimdim 

if we can provide the claim then the proof is done. Using the definition of accessibility, we
see that there exist yxxxx k  ,,, 10  , such that ix and 1ix can be connected by an

integral curve of FX  ,i.e.,
 iX

ti xex 1

Now for any FY  , using the Campbell-Baker-Hausdorff formula we have

     



 

0
1 !

*
k

k

i
k
Xi

X
t k

txYadxYe (12.57)

Since the right hand side of equation(12.57) is in  ixF and the FY  is arbitrary

 
ii xx

X
t FFe 




1

Since  
X
te is a diffeomorphism, it is clear that

   
ii xx

FF dimdim
1




Exchanging ix with 1ix and using Campbell-Baker-Hausdorff formula again we

can get
   

1
dimdim




ii xx
FF

It follows that
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     
yxx

FFF dimdimdim
1

 

Then the following corollary is an immediate consequence of Proposition12.3.1,
Theorem12.3.1 and Proposition12.3.5.

Corollary12.3.2.1
For an analytic nonlinear system of the form of (12.53), local weak controllability is

equivalent to the accessibility rank condition.
Next, let’s consider the real reachable set. Denote the reachable set of Mx 0 at time

t by  txR ,0 . It is obvious that

   txRxR t ,000 

Definition12.3.2.7
(1) System(12.53) is said to be accessible at Mx 0 , if  0xR contain a non-empty

open set. The system is said to be accessible if it is accessible at every Mx .
(2) System(12.53) is said to be strongly accessible at Mx 0 , if for any 0T ,

 TxR ,0 contains a non-empty open set. The system is said to be strongly accessible if it

is strongly accessible at every Mx .
Theorem12.3.2.2
1. For system(12.53) assume the accessibility rank condition is satisfied at Mx 0 ,

i.e.,
  nF

x


0
dim (12.58)

Then it is accessible at 0x . Moreover, for any 0T the reachable set has an empty

interior.
 txRTt ,00  (12.59)

2. If the system is analytic, then the accessibility rank condition(12.58) is necessary
and sufficient for the system to be accessible at 0x .

3. Assume that the system is analytic and accessibility rank condition(12.58) holds.
Then the set of interiors is dense in the set  txRTt ,00  .

Proof is neglected here. Readers can consult related controllability books.

12.3.3 Nonlinear system observability

For system(12.53), if in the state space there are two points 1x and 2x such that for
any feasible control u the outputs are identically the same, i.e.,

    utuxtyuxty  ,0,,,,, 21

Then 1x and 2x are said to be in-distinguishable. The set of in-distinguishable

points with respect to 0x is denoted by  0xID .
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For a linear system(2.150), observability is independent of the control(see equations
(5.38) and (5.48) ). The system output expression is as follows

       
t

t

tAttA dBueCxCey
0

0
0 

This implies
  1212

0 xxCeyy ttA  

Above expression is independent to input controlu .
Similar to the case of controllability, global observability is also a difficult topic in the

investigation of nonlinear systems. For this reason we are primarily interested in local
observability.

For a point Mx 0 and a neighborhood U of 0x , given a 0T , a U feasible

control u is such a control that the trajectory remains in U , i.e.,
   TtUuxtx ,0,,, 0  .

If for any 0T and any corresponding U feasible control u ,
     Ttuxtyuxty ,0,,,,, 21 

then 1x and 2x are said to be U -in-distinguishable. The set of

U -in-distinguishable points of 0x is denoted by  0xIDU .

Definition12.3.3.1
System(12.53) is said to be locally observable at 0x if for any neighborhood U of

0x the U -in-distinguishable set consists of only one point, i.e.,

    UxxIDU  ,00

The system is said to be locally weakly observable at 0x if there exists a

neighborhood U of 0x the U -in-distinguishable set consists only one point, i.e.,

   00 xxIDU 

It is worth noting that local observability is very strong property. In fact, it implies
observability. So we are mostly interested in local weak observability. To investigate the
observability we can construct a set of output related functions:

 








 


FXRmjkshLLH i
kii

s

i
jXXi i

ik
i ,,1,,

1
1

  (12.60)

Using H we define a co-distribution as
 HhdhH co 

coH is called the observability co-distribution.

Definition12.3.3.2
System(12.53) is said to satisfy the observability rank condition at 0x if

  nH
xco 
0

dim (12.61)
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If for every Mx , expression(5.33) is satisfied, the system is said to satisfy the
observability rank condition.

Next, we consider the relationship between observability and local weak observability.
Theorem12.3.3.1
If system(12.53) satisfies the observability rank condition at 0x , then it is locally

weakly observable at 0x .

To prove this theorem, we need the following lemma.
Lemma12.3.3.1
Let MV  be an open set. If there exist Vxx 21, such that

 21 xIDx V (12.62)

Then for any function   Hxc  ,

   21 xcxc 

Proof.
Choosing any FXX k ,,1  , we construct

   xeex k

k

X
t

X
tk 1
1



When t is small enough, we have

      mjxhxh kjkj ,,1,21   (12.63)

Differentiating both sides with respect to 1t we have

     21
1

11

1

11
xeehLxeehL k

k

k

k

X
t

X
tjX

X
t

X
tjX  

Setting 01 t yields

     21
2

21

2

21
xeehLxeehL k

k

k

k

X
t

X
tjX

X
t

X
tjX  

Continuing this procedure with respect to kttt ,,, 32  , we finally have

   21 1111
xhLLLxhLLL jXXXjXXX kkkk






Now let’s together prove theorem12.3.3.1
Proof.
Since nH co dim , we can choose n functions   nixci ,,1,  , such that they are

linearly independent at 0x . Define a mapping

        Tn xcxcxcxP ,,, 21 

By construction there exists a neighborhood U of 0x such that   nRUPUP :

is a diffeomorphism. Now for any Uxx 0 , since    0xPxP  ,  0xIDx U .

Hence
  00 xxIDU 

Now a natural question is if the observability rank condition is necessary for local
weak observability. We have the following results.
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Theorem12.3.3.2
If system(12.53) is locally weakly observable, then the observability rank condition is

satisfied on an open dense subset of M .
Proof
The set of points where the observability rank condition is satisfied is obviously an

open set. So we have only to prove that it is dense.
Assume that there is a non-empty open setU , such that

   UxnkxH co  ,dim

In fact, we can assume   xHk coUx dimmax  . Then there exists an open subset

UV  , such that    VxkxH co  ,dim .

Then we can find k functions in H such that all the co-vector fields in coH can

be expressed as a linear combination of the k forms   kixdc ii ,,1,  , locally on U .

Constructing a local coordinate chart as  zU , , where  21, zzz  and

 Tkccz ,,1
1  . Then the system(12.53) can be expressed as

 

 
 






















pjzhy
uzfz

uzfz

jj ,,1,
,

,

1
2

1
1


(12.64)

Since coj Hdh  , jh depends on 1z , i.e.,

   1zhzh jj  .

Next, we claim that 1f depends only on 1z too, i.e.,

   uzfuzf ,, 111 

Otherwise, say for some njkki  1,1

  Ux
z

uzf

j

i 


 ,0,
2

1

.

Then the thj  component of     xcL iuzf , is

       0,
2

1

, 





j

i
jiuzf z

uzfxcdL

Hence for some Ux ,

      xHxcdL coiuzf ,

which is a contradiction.
Now system(12.64) can be locally expressed as
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 
 
 























pjzhy
uzfz

uzfz

jj ,,1,
,

,

1

2
2

11
1


(12.65)

Choosing two points Uzz 21, as

    2
2

2
1

1
2

1
1

2
2

1
22

2
1

1
11 ,,,,, zzzzzzzzzz 

Then
      Uztuzytuzy  ,,, 21

The system is not locally observable at 0x .

Note that in the above proof, we assume that the feasible controls are piecewise
constant. If the feasible controls are state feedback controls, the proof remains true(with
some mild modification).

Finally we continue to consider analytic case.
Theorem12.3.3.3
If system(12.53) is analytic and satisfies the controllability rank condition. It is locally

weakly observable if and only if the observability rank condition is satisfied..
Proof.
Since the controllability rank condition is satisfied, it is locally weakly controllable.

That is, for any two points  yWRxMyx  ,, , Using theorem12.3.3.1, we only have to

prove the necessity. Using theorem12.3.3.2, it suffices to show that coH has constant

dimension everywhere. Using the local weak controllability, it is enough to show that
 coHdim is the same for any two points connected by an integral curve of  F . Let

 12 xex X
t for some  FX  . For any coH , we use Campbell-Baker-Hausdorff

formula to get

     
!0

12 k
txLxe
k

k

k
X

X
t 





 

Now the left hand side is in
1xcoH and  X

te is an isomorphism. It follows that

   
12

dimdim
xcoxco HH 

Using  
X
te in reverse time, we also have

   
21

dimdim
xcoxco HH 

In the following, we consider an unforced nonlinear of the following form

 
 










xhy
RRfxfx nn: (12.66a)
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And then we look for observability conditions in a neighborhood of the origin 0x .
Theorem12.3.3.4
The state space realization(12.66a) is locally observable in a neighborhood DU 0

containing the origin, if

0
1

, Uxn
hL

h
rank

n
f








































 (12.66b)

For linear-invariant systems, condition(12.66b) is equivalent to the observability
condition(5.38).

Example12.7 Let












Cxy
Axx

Then   Cxxh  and   Axxf  . And we have

 
 

11 



















nn
f

f

CAhL

CACAxx
x
hhL

Cxh



Therefore, given system in example12.7 is observable if and only if

 Tn
o CACACACS 12   is linearly independent or ,equivalently if   nSrank o  .

Note that the local observability of nonlinear system does not imply global
observability in general.

Example12.8 Consider the following nonlinear system

 





















1

12

21 1

xy
xx

uxx

The form of this nonlinear system is as follows

   
 










xhy
uxgxfx

Here,

      1
2

1

2 ,
0

, xxh
x

xg
x
x

xf 


















If 0u , we have
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   2
10
01









 rankhLhrank T

f

And thus

 
 










xhy
xfx

At the origin, given nonlinear system is observable according to definition12.3.3.4.
Now let’s consider the same system but assume that 1u . Substituting this input function,
we obtain the following dynamical equations:





















1

12

1 0

xy
xx

x

A glimpse at the new linear time-invariant state space realization shows that the
observability has been lost.

12.4 Nonlinear Observer

There are several ways to approach the nonlinear state reconstruction problem,
depending on the characteristics of the transfer function(the plant). A complete coverage of
the subject is outside the scope of this book and my present ability. In this section, we will
discuss two rather different approaches to nonlinear observer design, each applicable to a
particular class of systems.

12.4.1 Nonlinear observer with linear error dynamics

Motivated by the work on feedback linearization, it is tempting to approach nonlinear
state reconstruction using the following three-step procedures

(1) Find an invertible coordinate transformation that linearizes the state space
realization.

(2) Design an observer for the resulting linear system.
(3) Recover the original state using the inverse coordinate transformation defined in

(1).
More explicitly, suppose that a system of the form is given

   
 










Ryxhy
RuRxuxgxfx n ,, (12.67)

There exist a diffeomorphism  T satisfying
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    nRzTxTz  ,00, (12.68)
And such that, after the coordinate transformation, the new state space realization has

the following form

 











RyzCy
uyzAx

0

0 , (12.69)

where

 

 
 

 















































uy

uy
uy

CA

n ,

,
,

,1000,

0100

0010
0001
0000

2

1

00

















(12.70)

Then under above conditions, an observer can be constructed according to the
following theorem.

Theorem12.4.1.1
If there exist a coordinate transformation mapping system(12.67) into the new

form(12.68), then defining

  n
n RzzyKuyzAz 





 


^^^

0

^
,, (12.71)

 zTx 1
^

 (12.72)

Such that the eigenvalues of matrix  00 KCA  are in the left half of the complex

plane, then xx
^

as t .
Proof.

Let
^~
zzz  , and

^~
xxx  . We have

    

 
~

00

^^

00

^~
,,

zKCA

zyKuyzAuyzAzzz n















 








If the eigenvalues of matrix  00 KCA  have negative real part, then we have that

0
~
z as t .

Using expression(12.72), we obtain

  0
~

11
^~







   zzTzTxxx as t .

Hence, theorem12.4.1.1 is found.
Example12.7 Consider the following nonlinear dynamical system
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



















1

3
1212

2
121 2

xy
uxxxx

xxx

(12.73)

and define the coordinate transformation











12

2
121 2

1

xz

xxz

In the new coordinate, system(12.73) takes the following form






















2

2
12

33
1

2
5

2

zy

yzz

uyyz

Referring equation(12.69), we have

 10,
01
00

00 







 CA , and













 
 2

33

2
5

2

y

uyy


Hence, the observer is as follows

  





 



2
^^

0

^
, zyKuyzAz 

Namely,







 















 











































2
^

2

1
2

33

2
^
1

^

2
^

1
^

25
2

01
00

zy
K
K

y
uyy

z
z

z

z

The error dynamics is as follows












































2
~
1

~

2

1

2
~

1
~

1
0

z
z

K
K

z

z

Thus, 0
~
z for any 0, 21 KK .

It should come as no surprise that, as in the case of feedback linearization, this
approach to observer design is based on the cancellation of nonlinearities and therefore
assumes “perfect modeling”. In general, perfect modeling is never achieved because system
parameters can not be identified with arbitrary precision. Thus, in general, the “expected”
cancellations will not take place and the error dynamics will not be linear. The result is that
this observer scheme is not robust with respect to parameter uncertainties and that
convergence of the observer is not guaranteed in the presence of model uncertainties.
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12.4.2 Nonlinear observer with Lipschitz systems

In this section we will discuss nonlinear observer design using a Lyapunov approach.
For simplicity, we restrict attention to the case of Lipschitz systems, defined below.

 











Cxy
uxfAxx , (12.74)

Here nnn RCRA   1, , and nn RRRf : is Lipschitz in x on an open set
nRD  , i.e., function f satisfies the following condition:

    Dxxxuxfuxf  ,,, 21
*

2
*

1  (12.75)

Now consider the following observer structure







 









^^^^

, xCyLuxfxAx (12.76)

Here 1 nRL . The following theorem shows that, under these assumption, the
estimation error converges to zero as t .

Theorem12.4.2.1
The system(12.74) and the corresponding observer(12.76), if the Lyapunov equation

    QPLCALCAP T  (12.77)

Here 0 TPP , and 0 TQQ , they are satisfied with
 
 P
Q

max

min

2
  (12.78)

Then the observer error
^~
xxx  is asymptotically stable.

Proof

  

    



















 













uxfuxfxLCA

xCyLuxfxAuxfAxxxx

,,

,,

^~

^^^^~

To see that

~
x has an asymptotically stable equilibrium point at the origin, consider

the Lyapunov function(see Chapter4):
~~~
xPxxV

T




























 











uxfuxxfPxxQxxPxxPxxV
TT

,,2
^^~~~~~~~~~

But，
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 
~~2

min xQxxQ
T



And

  2
max

^^~~^^~~
2,,2,, xPuxfuxxfPxuxfuxxfPx

TT














 


















 

Therefore,


V is negative define, provided that

   
2~

min

2~

max2 xQxP  

Or, equivalently
 
 P
Q

max

min

2
 

Example12.8 Consider the following nonlinear dynamical system











































2
22

1

2

1 0
21
10

xx
x

x
x

Setting

 TL 20

Then we have that












21
10

LCA

Solving the Lyapunov equation

    QPLCALCAP T 

with unitEQ  , we obtain














5.05.0
5.05.1

P

which is positive definite. The eigenvalues of matrix P are   2929.0min P , and

  7071.1max P . We now consider the function f . Denoting




















2

1
2

2

1
1 ,







xx

We have that

        

22122222

2222
2
2

2
2

22
2

2
2221

222 xxkk

xfxf









For all x satisfying k2 . Thus, k2 and f is Lipschitz

  kx T  221 :  , and we have
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 Pk
max2
12


  , or

8284.6
1

k

The parameter k determines the region of the state space where the observer is
guaranteed to work. Of course, this region is a function of the matrix P , and so a function
of the observer gain L .

12.5 Nonlinear optimization

The optimality conditions for problems with nonlinear constraints are similar in form
to those for problems with linear constraints. However, their derivation is more
complicated, even though it is based on related principles. The intuition behind the
derivation is the same as optimal problem in linear constraints, but in the case of nonlinear
constraints different technical tools are required to give substance to this intuition. In
addition, nonlinear constraints can give rise to situations that are impossible in the case of
linear constraints.

Since nonlinear optimal control is a very complicated and wide topic, we only give
some coarse discussion in this section. The optimality conditions for nonlinearly
constrained problems form the basis for algorithms for solving such problems, and so are of
great importance. However, not all readers may be interested in studying the derivation of
these conditions. For this reason, we firstly state the optimality condition together with
some examples. Then we coarsely discuss the use of these optimality condition within
optimization algorithms. Only then we present the derivation of the optimality conditions.

12.5.1 Optimality conditions for nonlinear constraints

Here, we present the optimality condition separately for problems with equality and
inequality constraints. It is straightforward to combine these results into a more general
optimality condition.

The problem with equality constraints is written in the general form as follows:
Minimize  xf

Subject to   mixgi ,,2,1,0 

The problem with inequality constraints is as follows
Minimize  xf

Subject to   mixgi ,,2,1,0 

Here, we assume that all the functions are twice continuously differentiable.
Some additional assumption must be made to ensure the validity of the optimality

conditions. We have chosen to assume that a solution *x to the optimization problem is a
“regular” point. In the case of equality constraints this means that the gradients of the
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constraints   *xgi are linearly independent. In the case of inequality constraints this

means that the gradients of the active constraints at *x ,     0: **  xgxg ii , are linearly

independent.
Example12.9 (Regularity). Consider an equality-constrained problem with two

constraints:
 
  0142

03
2
3212

2
3

2
2

2
11





xxxxg

xxxxg

The feasible point is  Tx 111*  . The gradients of the constraints at *x are

   
   T

T

xg

xg

242

222
*

2

*
1





These two gradients are linearly independent, and so feasible point *x is a regular
point.

Now let’s consider an inequality-constrained problem with the single constraint.

  01
2
1

2
1,

3
2
2

2
1211 






  xxxxg

We get that the feasible point is  Tx 11*  . This constraint is binding at this point,

and the gradients of the constraints at *x are

   Txg 00*
1 

Hence feasible point  Tx 11*  is not a regular point.
According to the form in equation(7.38), we can write out the optimal condition in the

form of Lagrange function:

         xgxfxgxfxL T
m

i
ii   

1
, (12.79)

Here  is a vector of Lagrange multipliers, and g is the vector of constraint

functions  ig . We coarsely discuss these conditions below. They are derived in the

section12.5.2.
Theorem12.5.1.1 (Necessary conditions, Equality Constraints)
Assume that *x is a local minimize solution of function f subject to the constraints

  0xg . Assume that  *xZ is a null-space matrix for the Jacobian matrix  Txg * . If
*x is a regular point of the constraints, then there exists a vector of Lagrange multipliers
* such that

(1)   0, **  xLx , or equivalently     0**  xfxZ T , and

(2)      ***2* , xZxLxZ xx
T

 is positive semidefinite.

Theorem12.5.1.2 (Sufficient conditions, Equality Constraints)
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Let *x be a point satisfying   0* xg . Let  *xZ be a basis for the null space of

 Txg * . Suppose that there exists a vector * such that

(1)   0, **  xLx , and

(2)      ***2* , xZxLxZ xx
T

 is positive semidefinite.

Then *x is a strict local minimal value of function f in the set   0: xgx .

This theorem involves the Jacobian matrix  Txg * , which is the matrix of gradients
of the constraint functions. For a linear system of equality constraints bAx  , the Jacobian
would be equal to A , and so the condition

    0**  xfxZ T (12.80a)
Or equivalently

      0, *****   xgxfxLx (12.80b)

which is analogous to the following condition for the linear constraint
  0*  xfZ T , or equivalently   ** TAxf 

The second-order conditions are based on the reduced Hessian

     ***2* , xZxLxZ xx
T



These conditions involve the Hessian of the Lagrange optimal expression  ,xL , while
in the case of linear constraints they involve the Hessian of the objective f . The second
derivatives of linear constraints are zero, however and so

   *2**2 , xfxLxx  

in this case. Thus, the second-order condition for linearly constrained problems are a
special case of the conditions above.

These optimality conditions are demonstrated in the following example.
Example12.10 (Optimal Conditions, Equality Constraints). Consider the following

problem
Minimize   2

2
2
1 xxxf 

Equality constraints: 42 2
2

2
1  xx

Here we have a single constraint   042 2
2

2
1  xxxg . The Lagrange function

could be given as follows
   42, 2

2
2
1

2
2

2
1  xxxxxL 

Therefore, an optimal point must satisfy the following equation group together with
the feasible requirement.

042
022

22

11



xx

xx




The first equation has two possible solutions: 01 x and 1 . If 01 x , then from
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feasible equation we can get 22 x . In another case, the second equation implies that

2
1

 . On the other hand, if 1 , then from the second equation we get 02 x , and

from feasible equation we can get 21 x . There are four possible solutions:

 
 
 
  .1,0,2

;1,0,2

;
2
1,2,0

;
2
1,2,0















T

T

T

T

x
x

x

x

These are all stationary points of  21, xxf . We can determine which are minimal
value by examining the Hessian matrix

   
 



































2120
012

40
02

20
02

,2 xLxx

Now consider the solution  Tx 2,0 with Lagrange multiplier 21 . Since

     TTxxxg 24042 21  , we can choose the null-space matrix    TxZZ 01 .

Taking 21 , we obtain

  03,2  ZxLZ xx
T  ,

Hence the reduced Hessian is positive definite and the point is a strict local minimal

value of function f . Similarly, the solution  Tx 2,0  is also a strict local minimal
value.

If we take the solution  Tx 0,2 , 1 , then      TTxxxg 0,442 21  , and

we can choose the null-space matrix  TZ 1,0 . The reduced Hessian is

  06,2  ZxLZ xx
T  , and hence the point is a local maximizer of f . A similar

conclusion holds for the point  Tx 0,1 . For this problem, all feasible points are regular
points.

Next, we give out the necessary conditions for problems with inequality constraints.
These conditions are sometimes called the Karush-Kuhn-Tuchker conditions, the KKT
conditions.

Theorem12.5.1.3 (Necessary conditions, inequality constraints)
Assume that solution *x is a local minimum point of function  xf subject to the

constraints   0xg . Let the columns of  *xZ form a basis for the null-space of the

Jacobian of the active constraints at *x . If *x is a regular point for the constraints, then
there exists a vector of Lagrange multipliers * such that

(1)   0, **  xLx , or equivalently     0**  xfxZ T ,
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(2) 0*  ,

(3)   0** xgT , and

(4)      ***2* , xZxLxZ xx
T

 is positive semidefinite.

The condition   0** xgT is the complementary slackness condition. Since the

vectors * and  *xg are both non-negative, it implies that   0** xgii for each i .

This means that either a constraint is active, or its associated Lagrange multipliers
corresponding to the active constraints are all positive, then we have strict complementary;
otherwise, if a Lagrange multiplier corresponding to an active constraint is zero, the
constraint is said to be degenerate.

The second-order sufficiency conditions for a local minimum point are stated below.
Theorem12.5.1.4 (Sufficiency conditions, inequality constraints)
Let *x be a point satisfying   0* xg . Suppose that there exists a vector * such

that
(1)   0, **  xLx ,

(2) 0*  ,

(3)   0** xgT , and

(4)      ***2* , xZxLxZ xx
T

   is positive definite.

Here, Z is a basis for the null-space of the Jacobian matrix of the non-degenerate

constraints (the active constraints with positive Lagrange multipliers) at *x is a strict local
minimizer of function f in the set   0: xgx .

These optimal conditions are demonstrated by the following example.
Example12.11(Optimal conditions, Inequality constraints). Consider the problem
Minimize   1xxf 

Inequality constraint   2,11 2
2

2
1

2
2

2
1  xxxx

Figure12.9 Problem with nonlinear inequalities
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Please test whether the points      TTT CBA 2,0,1,1,0,0  are
optimal( see figure12.9).

Rearranging the constraints to the “ ” form we obtain

      211, 2
2

2
12

2
2

2
111  xxxxxxL 

Therefore

   













2221

1211

22
2121

,
xx
xx

xLx 




And

  












12

122

220
022

,



xLxx

At the point A , only the first constraint is active, and hence 02  . Solving for 1

we obtain








00
021 1

Then, we get
2
1

1  .

Therefore, this is a candidate for a local minimizer. Taking  TZ 10 as a basis

matrix for the null space of the Jacobian matrix  02 , we get

    1
1
0

10
01

10,2 


















 ZxLZ xx

T 

And hence the reduced Hessian matrix is negative definite, and the sufficiency
conditions are not satisfied. This point is not a local maximizer since 01  .

At the point B both constraints are active. Solving for the Lagrange multipliers we
obtain

2
1

022
021

21
21

2 








Therefore the point satisfies the first-order necessary condition for optimality.Moving
to the sufficiency conditions, we note that the null-space matrix for the Jacobian is empty.

Therefore the sufficiency conditions are trivially satisfied, and the point is strict local
minimal value.

At the point  TC 2,0 , only the second constraint is active, and hence 01  .

Solving for 2 we obtain

 
022

0021

2

2









This system is inconsistent. Hence the first-order necessary condition is not satisfied
and this point is not optimal.
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As in the linearly constrained case, the Lagrange multipliers provide a measure of the
sensitivity of the optimal objective value to changes in the constraints. This shows up in the
optimal conditions which include the requirement that 0*  for the
inequality-constrained problem. The magnitude of the multipliers also has meaning, with a
large multiplier indicating a constraint more sensitive to changes in its right-hand side.

The following example shows that if the regularity condition is not satisfied at a local
minimizer, the first-order necessary condition for optimality may not hold.

Example12.12(Regularity condition Not satisfied). Consider the problem
Minimize   21 43 xxxf 

Equality constraint     11,11 2
2

2
1

2
2

2
1  xxxx

The solution to this problem is  Tx 0,0*  , which is also the only feasible point.

The gradients of the constraints at *x are  T02， and  T0,2 , and thus are linearly
dependent. Setting the gradient of the Lagrange function with respect to x equal to zero
yields

04
0223 21


 

This is an inconsistent system. Hence there are no multipliers 1 and 2 for which
the gradient of the Lagrange function is zero, even though the point is optimal.

12.5.2 Derivation of Optimal conditions for nonlinear

constraints

We now examine the derivation of the optimality conditions for nonlinear constraint
problems. We again begin with a problem that has equality constraints only:

Minimize  xf
Subject to   mixgi ,,2,1,0 

Each of the functions  xf and  xgi is assumed to be twice continuously

differentiable. If we define  xg as the vector of constraint functions   xgi , then the

problem is to minimize  xf limited to   0xg . The set of points x such that  xg is
called a surface.

We derive first-order and second-order optimality conditions for this problem. The
main difficulty is the characterization of small movements that maintain feasibility. In
nonlinear case, this is not possible. For example, consider the nonlinear equality constraint

22
2

2
1  xx , and let x be any feasible point such as  Tx 1,1 . Any small step taken

from x along any direction will result in the loss of feasibility(see figure12.10). Thus
there are no feasible directions at this point, or at any other feasible point. To define small
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movements that maintain feasibility, we will use feasible curves.

Figure12.10 No feasible direction Figure12.11 Feasible curve
Example12.13(Feasible curve). Consider the the following constraint and curve
Constraint   032

3
2
2

2
1  xxxxg

Curve  
 
  























 tt
t

tx ,
1

4sin2
4cos2

Then    Tx 1110 ，， and       0314sin24cos2 22   ttxg . Hence

 tx is a feasible curve passing through the point  T1,1,1 . The tangent to the curve at

point  T1,1,1 is seen in figure12.11.

   
 
 






































 0

1
1

0
4cos2
4sin2

0
0

' 


t
t

dt
tdxx

t

Now we suppose that solution *x is a local solution of the optimization problem. Then
*x is a local minimizer of function  xf along any feasible curve passing through point
*x . Let  tx be any such curve with   *0 xx  . Then 0t is a local minimizer of the

one-dimensional function   txf , and the derivative of function   txf with respect to
t must vanish at 0t . Then we can obtain the following derivative

            00 *'

0

'

0






xfxtxftx
dt
txdf T

t

T

t

Thus, if point *x is a local minimizer of function  xf , then

    00 *'  xfx T for all feasible curves  tx through point *x . (12.81)
Define

      *'* 0: xthroughtxcurvesfeasiblesomeforxppxT 

This is the set of all tangents to feasible curves through *x . Now assume for
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convenience that  *0 xT . The set has the property that if  *xTp , then  *xTp

for any non-negative scalar coefficient  . A set with this property is called a cone, and for
this reason  *xT is sometimes called the tangent cone at point *x . The tangent cone at

the point  T111 ，， in example12.13 is shown in figure12.12. It is parallel to the tangent

plant at  T111 ，， but passes through the origin point.

Figure12.12 Tangent cone
From equation(12.81) we obtain a condition for optimality of a feasible point *x :

  0*  xfpT for all  *xTp
In this form, the optimality condition is not yet practical, since it is not always easy to

represent the set of all feasible curves explicitly. We shall develop an alternative
characterization of the tangent cone. To this end, we notice that   txgi is a constant

function of time t (it is zero for all t ), and hence its derivative with respect to t vanishes
everywhere, i.e.,

   0
dt
txdg i

Then we obtain

     0'  txgtx i
T

In particular, at 0t we obtain     00 *'  xgx i . Since this is true for all feasible

arcs through *x , we obtain
  0*  xgp i

T for all  *xTp

The equation above holds for each constraint   0xgi . It will be useful to define

 *xA as the nm matrix whose ith row is  Ti xg * . This is the Jacobian matrix of

 xg at point *x . The equation above can be written as   0* pxA , so that any vector in

the tangent cone at *x also lies in the null space of the Jacobian matrix at *x :
    ** xANpxTp 

Hence the tangent cone at a point is contained in the null space of the Jacobian matrix
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at the point.
Example12.14 (Null space of the Jacobian). Consider the problem in example12.13.

At  Tx 1,1,1*  we have    TTxg 2,2,2*  . Thus any vector p in the tangent

cone must satisfy   0222 321
*  pppxgpT , that is to say, 0321  ppp . In this

example, the tangent cone and null space of the Jacobian are both equal to the set
 0: 321  pppp .

In the previous example, the tangent cone and the null space of the Jacobian were
equal. It can be difficult to characterize the tangent cone, but it is easy to compute the
Jacobian matrix and to generate its associated null space. Hence it would be useful if these
two sets were always equal. Unfortunately, this is not always the case, as the next example
shows.

Example12.15 (     ** xANxT  ). Consider the the constraint

  01
2
1

2
1 2

2
2

2
1 






  xxxg . The feasible set is a circle of radius 2 . The tangent cone at

the point  Tx 11* ， is the set    0: 21
*  pppxT . Since

 
T

xxxxxxxg 













 






  2

2
2

2
11

2
2

2
1 1

2
1

2
12,1

2
1

2
12 , the Jacobian matrix at *x is

   0,0* xA . Therefore the null space of the Jacobian is    2* RxAN  and

    ** xANxT  .
Luckily, example such as above are uncommon. In the majority of problems the

tangent cone at a feasible point is indeed equal to the null space of the Jacobian matrix at
the point. One condition that guarantees that this is regularity, that is, the assumption that
the gradient vectors   mixgi ,,2,1,*  are linearly independent(or equivalently, that

their Jacobian matrix has full row rank). In the next lemma we prove that if point *x is a
regular point, then     ** xANxT  .

Lemma 12.5.2.1
If point *x is a regular point of the constraints, then     ** xANxT  .
Demonstration
We need only show that   *xANp implies that  *xTp ; that is, there exists

some feasible curve  tx through point *x satisfying   px 0' .
To prove the existence of a feasible curve we shall use the derivative rule of the

implicit function. Let y be an m -dimensional vector, and consider the following system
of nonlinear equations in y and t :

   0**  yxgtpxg

The system has a solution at    0,0, ty . Its Jacobian with respect to y at this
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point is

    
   

   **

0,0,

*** xgxgyxgtpxgxg T

ty

T




which by the regularity assumption is non-singular. Therefore, by the derivative rule of the
implicit function in advanced mathematics, there exists a continuously differentiable
function  tyy  in a neighborhood of 0t satisfying

     0**  tyxgtpxg

Letting      tyxgtpxtx **  , we obtain that  tx is a feasible curve through
*x with   *0 xx  . It remains only to show that   px 0' . From the formula for  tx we

have that      00 '*' yxgpx  , so we need to show that the second term is zero. Since

 tx is a feasible curve it satisfies     00'*  xxg T .Hence

        00'***  yxgxgpxg TT

The first term above is zero because   *xANp . The lemma now follows because
of the regularity assumption.

If we assume that a local minimizer is a regular point, we can obtain a more useful
optimality condition. Let *x be a local solution that satisfies the regularity condition. Then
any vector   *xANp is also in  *xT . It follows that

  0*  xfpT for all   *xANp .

If  *xZ is a null-space matrix for  *xA , then

    0**  xfxZ T

This is the first-order necessary condition for optimality. It states that the reduced
gradient at a local minimum must be zero. We note here that the same condition is also
satisfied at a local maximum point. The reduced gradient may be also zero at a point that is
neither a local maximum nor a local minimum point, that is, at a saddle point.

As in the linear case, we can show that the reduced gradient is zero if and only if there
exists an m -dimensional vector * such that

     



m

i
i

m
i

T xgxAxf
1

**** 

This is an equivalent statement of the first-order necessary condition for optimality.
The coefficients  *i are the Lagrange multipliers.

We now derive the second-order conditions for optimality. Recall that if point *x is a
local minimizer, then point *x is a local minimizer along any feasible curve passing
through point *x . Let  tx be any such curve with   *0 xx  . Then since 0t is a local

minimizer of the function   txf , the second derivative of   txf with respect to t
must be non-negative at 0t . Using the chain rule, we can obtain
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                   txxftxxftxtxftx
dt
d

dt
txfd TTT '''2''

2



Hence

         000 ''**2
2

2

 xxfpxfpxf
dt
d T

where  0'xp  is the tangent to the curve at *x . In the expression above, the term

   0''* xxf T
 does not necessarily vanish. Therefore the second derivative along an arc
depends not only on the Hessian of the objective, but also on the curvature of the
constraints(that’s, on the term  0''x ).

To transform this into a more useful condition, it will be convenient to get ride of the
term involving  0''x . To do this, we notice that  xgi is constant, so its second derivative

with respect to time t must vanish for all t , in particular at 0t . Using the chain rule
we obtain

      00''**2  xxgpxgp T
ii

T

We can multiply the last equality by *
i and sum over all i . If we subtract the result

from the previous inequality, then, because   0, **  xLx , the term involving  0''x
will be eliminated. The final result is that

    0
1

*2**2 







 



pxgxfp
m

i
ii

T 

for all tangent vectors  *xTp . The term in brackets is the Hessian of L with respect to

x at the point  ,x . Therefore

   0, **2  pxLp xx
T 

for all tangent vectors  *xTp . Under the regularity assumption, this inequality will hold

for any p in   *xAN . Consequently, the reduced Hessian      ***2* , xZxLxZ xx
T



must be positive semidefinite. This the second-order necessary condition for optimality.
The proof of the sufficiency conditions uses similar techniques.
Finally, we consider a problem with nonlinear inequality constraints:
Minimize  xf
Constraint   mixgi ,,2,1,0 

Optimality conditions can be derived by combining the ideas developed for problems
with nonlinear equalities with those for problems with linear inequalities. There are a few
issues which are unique to problems with nonlinear inequalities. We discuss them briefly.

Let *x be a feasible solution to the inequality-constrained problem. Whereas in the
case of equality constraints we can maintain feasibility by moving in either direction along
a feasible curve through point *x , here it is often possible to move in only one direction;
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we shall call this “movement along a feasible arc”. More formally, we define an arc
emanating from *x as a directed curve  tx parameterized by the variable t in an time

interval  T,0 for which   *0 xx  . An arc is feasible if    0txg for t in  T，0 .
Some examples of feasible arcs are illustrated in figure12.13. The optimality conditions are
a result of the requirement that if a small movement is made along a feasible arc, the
objective value will not decrease.

The constraints that are inactive at *x can be ignored, since they do not influence the
local optimality conditions. With the regularity assumption, it is possible to derive the
first-order and second-order conditions for optimality.

Chapter summary

Nonlinear control is a very complicate topics at present. According to present
development status, some topics are coarsely provided and explained such as linearization
of nonlinear control system, stability, controllability and observability. Then nonlinear
observer and nonlinear optimization are tried to be explained and demonstrated. In this
chapter, readers should know the basic concept of nonlinear system, and understand the
stability and controllability and observability of nonlinear system. Besides these topics,
readers should know how to realize a nonlinear observers. Of course, given topics are
coarsely illustrated and shallowly explored for nonlinear system is very complicated and
wide topics such as global observability, local control and period controllability, and so on.
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Review Questions

12.1. What is the basic problem of nonlinear control system?
12.2. What are the basic properties of nonlinear control you know?.
12.3. What methods can be employed to realize the linearization of nonlinear control

system?
12.4. Is Lyapounov’s stability judgment criterion utilized to judge the stability of nonlinear

control system? How is the judgment criterion applied into nonlinear control system?
12.5. Local stability of nonlinear system is the stability of system, is it right?
12.6. Please the main methods that utilize to judge the observability of nonlinear system in

terms of your recognition.
12.7. What is the optimality condition for nonlinear constraint system?
12.8. Please give out the connection and difference between nonlinear observer and linear

observer.

Problems

Problem12.1. Please find the equilibrium points for the system described by the following
differential equation:

  0312 2 


yyyyy
Then evaluate the linearized Jacobian matrix at each equilibrium point and determine

the stability characteristics from the eigenvalues.

Problem12.2. The desired response for the second-order nonlinear system described by

uxx 


2
21 2 and 2

112 xuxx 


They are intended to imitate the uncoupled linear system
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