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Controllability and observability are very important two conceptions of control system
in modern control theory; hence they will be narrated and demonstrated in this chapter.
This chapter will discuss the controllability for linear system and its judgment criterion,
observability for linear system and its judgment criterion. And then structural
decomposition and the minimal realization of transfer function matrix will be also
discussed.

Objectives
By the end of this chapter, you should be able to:
 Know the basic conceptions of controllability and observability.
 Judge the controllability and observability of linear time-invariant system.
 Decompose the structure of linear system.
 Make the controllability and observability of state space expression standardize.
 Comprehend the minimal realization of transfer function matrix.

5.1 Introduction of Controllability and Observability

The basic conceptions of controllability and observability are put forward firstly by
Kalman. In multi-variable optimal control system, these two notions are very important.
According to these two conception, we can find the whole condition where optimal control
could be existent. In control engineering, people usually pay attention to two problems: 1)
after a input signal is input into a given system, can system state be converted from original
state to predicted state in a finite time?2) by observing system output for a certain time, is
original state judged? Such is the problem of system controllability and observability. If a
control system is not controllable, optimal control will not be realized successfully. If a
control system is not observable, state observer will not be designed and assigned.

In this section, we will firstly introduce linear correlation and linear independence,
and then give out the definition and condition of system controllability and observability.

5.1.1 Linear correlation and linear independence

If n numbers constitute a sequencing array, such array is called n -dimension vector.
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n -dimension vector can be written into row vector, also into column vector, namely





















nx

x
x

x

2

1

(5.1)

Or, written into the following form:

 Tnxxxx ,,, 21  (5.2)

Vector nxxx ,,, 21  is that the following equation is found

02211  nnxcxcxc  (5.3)

If all coefficients in equation(5.3) are zero, vector nxxx ,,, 21  is linear

correlation. Otherwise, vector nxxx ,,, 21  is linear independence.

For example, the following vector


















0
0
1

1x ,

















0
1
0

2x ,

















1
0
0

3x

These three vectors are linear independence for all coefficients in equation(5.3) are

zero. If a vector ix can be expressed by the linear combination of other

vectors nxxx ,,, 21  in terms of the form in equation(5.3), namely,






n

ij
j

jji xcx
1

(5.4)

Then vectors nxxx ,,, 21  are called linear correlation. For the following vector,


















3
2
1

1x ,

















1
0
1

2x ,

















4
2
2

3x

Above three vectors are linear correlation for 213 xxx  .

As we have known, modern control system is found on the basis of state space. State

equation is used to depict the relationship between input signal  tu and state  tx ; the

output equation is employed to describe the output change that caused by system state.
Controllability and observability could sufficiently demonstrate the control ability of input
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signal  tu to system state  tx and the exhibition ability of system output  ty to system

state  tx . However classical control theory is only used to discuss the control ability of

input signal to output signal. Controllability and observability are very important in modern
control theory. Hence, it’s necessary for us to discuss the controllability and observability
of system.

5.1.2 Definition of controllability

Controllability is used to judge the control ability of input signal  tu to system

state  tx , which is not related to system output  ty . Hence, we only study the
controllability of input signal to system state.

1) The definition of controllability for linear continuous time-invariant system
Assume that linear continuous time-invariant system is as follows

BuAxx 


(5.5)
For any system state  0tx and another system state  1tx , if there is a finite

time  10 , tt and a sectional continuous input signal  tu , they could successfully make

system state  0tx be transformed into another system state  1tx in a finite time  10 , tt .

Such system state is controllable, otherwise it is not controllable. If all system states are
controllable, such system state is completely controllable, which is briefly called that such
system is controllable.

Above definition can be demonstrated in a
phase plane shown in figure5.1. If point P in
phase plane can be converted into any a pointed
state nPPP ,,, 21  under the input signal,

point P in phase plane is a controllable state. If
controllable state could be filled in the whole
phase plane, that’s to say, for any original state a
corresponding input  tu could be found in a finite
time, original system state could be successfully
transformed into any pointed point in phase plane.
Such system is called state complete

controllability.
Obviously, the controllability of some a state in system is very different from state

complete controllability.
The following points need to be demonstrated.

Figure5.1 Phase plane
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 In linear time-constant system, at original time 00 t , original state is  0x ; any final

state  ftx can be pointed to be zero state, namely,

  0ftx

  0x can be also pointed to be zero state, and  ftx is any final state. That’s to say, if

there is an unconfined control input signal  tu in a finite time  10 , tt , it could make

system state  tx be converted into any state  ftx at the beginning of zero state. Such

case is called state reach-ability. For linear time-constant system, controllability and
reach-ability is interchanged.

 When we discuss controllability of system, control role in theory is unconfined, which
value is not unique.
2) The definition of controllability for linear continuous time-variant system
Assume that linear continuous time-variant system is as follows:

   utBxtAx 


(5.6)
The definition of controllability for linear continuous time-variant system is the same

as that for linear continuous time-invariant system; but matrices  tA and  tB are

time-variant matrices, not constant coefficient matrices.The transform of system state  tx
is related to the original time 0t selected. Hence, the emphasis in linear time-variant system

is that system is controllable at 0tt  .

3) The definition of controllability for linear discrete time-invariant system
Linear discrete time-variant system is as follows:

     kBukAxkx 1 (5.7)

Function  ku is input scalar function, which is constant in  1, kk . Its
controllability is defined as follows:

In finite time  nTt ,0 , if there is a sequence    1,,0 nuu  , this sequence

could make system with original state  0x be successfully converted into any final

state  nx . It’s thoughtful that system state is completely controllable.
Now let’s consider the specific parallel form shown in Figure5.2(a). To control the

pole position of closed-loop system, we are saying implicitly that the control signal, u , can
control the behavior of each state variable in x . If any one of the state variables can not be
controlled by the control u , then we can not place the poles of the system where we desire.
For example, in Figure5.2(b), if 1x , were not controlled by the control signal and if 1x
also exhibited an unstable response due to a nonzero initial condition, there would be no
way to effect a state-feedback design to stabilize 1x ; 1x would perform in its own way
regardless of the control signal, u . Thus in some systems, a state-feedback design is not
possible.
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Hence, we can know the following conclusions from above examples:
If an input to a system can be found that takes every state variable from a desired

initial state to a desired final state, the system is said to be controllable; otherwise, the
system is uncontrollable.

Figure5.2 Comparison between a controllable and an uncontrollable systems

5.1.2 Definition of observability

Feedback control form are usually adopted by plenty of control systems.In modern
control theory, feedback information is composed of state variables; but not all state
variables are observable in physics. Hence people started to study whether all state variable
information could be acquired by detecting system output. If every state variable could
affect system output, system state would be observable. If some state in all states does not
affect system output, such system will be not observable. Of course, the information of
some state is not acquired from given system output.

System observability demonstrates the ability of that system output reflects system
state, which is not related to input signal. That’s to say, observability is a property of the
coupling between system state and system output. Thus observability involves the matrices
A and C .Hence, when system observability is analyzed, homogeneous state equation and
output equation are only considered, namely,

  00, xtxAxx 


(5.8a)

Cxy  (5.8b)

A linear system is said to be observable at 0t if  0tx can be determined from the
output function  tty ,0

(or output sequence) for tt 0 , where t is some finite time

belonging to real. If this is true for all 0t and  0tx , the system is said to be completely
observable.
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Clearly the observability of a system will be a major requirement in filtering and state
estimation or reconstruction problems. In many feedback control problems, the controller
must use output variables y rather than the state vector x in forming the feedback signals.
If the system is observable, then system output y contains sufficient information about the
internal states so that most of the power of state feedback can still be realized. A more
complicated controller is needed to achieve these results. This is discussed fully in
Chapter11.

The following points need to be demonstrated in terms of above observability
definition.
 What observability expresses is the ability of that system output  ty reflects system

state  tx .Since the system output  ty caused by input signal  tu could be

calculated, we can order   0tu and only consider homogeneous state equation and
output equation in equation(5.8).

 On considering system output equation, we can find that solving state  tx is very

simple if dimension of system output  ty is equal to that of system state  tx , nm 

and further if matrixC is non-singular matrix. Namely, system state could be expressed
into the following form:

   tyCtx 1 (5.9)

 So long as the initial state is ensured, instant state of system could be gained in terms
of given input signal  tu and state equation.

           dButtxtttx
t

t 
0

00 (5.10)

5.2 Controllability of Linear System

Now we continue to explore the controllability from another viewpoint: that of the
state equation itself. When the system matrix is diagonal for a linear system, as it is for the
parallel form, it is apparent whether or not the system is controllable.For example, the state
equation in Figure5.2(a) is the following:

ux
a

a
a

x









































1
1
1

00
00
00

3

2

1

(5.11)

Or,

uxax 


111 (5.12a)

uxax 


222 (5.12b)
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uxax 


333 (5.12c)

Since each of equations(5.12) is independent from the rest, the control signalu affects
each of the state variables. This is controllability from another perspective. Now let us look
at the state equations for the system of Figure5.2(b):

ux
a

a
a

x









































1
1
0

00
00
00

6

5

4

(5.13)

Or,

141 xax 


(5.14a)

uxax 


252 (5.14b)

uxax 


363 (5.14c)

From the state equation in (5.13) or (5.14), we see that the state variable 1x is not
controlled by the control signalu . Thus, the system is said to be uncontrollable.

In summary, a system with distinct eigenvalues and a diagonal system matrix is
controllable if the input coupling matrix B (system input matrix) does not have any rows
that are zero.

For linear system, let’s explore the judgment criterion of system controllability matrix.

5.2.1 The first criterion of system controllability

Test for the controllability that we have so far explored can not be used for
representations of the system other than the diagonal or parallel form with distinct
eigenvalues. The problem of visualizing the controllability gets more complicated if the
system has multiple poles, even though it is represented in parallel form.Furthermore, one
can not determine controllability by inspection for systems that are represented in parallel
form. In other forms, existence of paths from the input to the state variables is not a
criterion for controllability since the equations are not decoupled.

In order to determine the system controllability, or alternatively, to design for a
feedback for a plant under any representation or choice of state variables, a matrix is
derived that must have a particular property if all state variables are controllable by the
plant input, u . We now state the requirement for controllability, including form, property,
and name of the matrix.

The first criterion of system controllability (Contraollability judgment criterion):
An nth-order plant whose state equation is the following is completely controllable

BuAxx 


(5.15)
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if the rank of matrix cS is n ,

  nBABAABBrankrankS n
c  2 (5.16)

where matrix cS is called the controllability matrix. Here, number n is system dimension.

Equation(5.16) is the first criterion of system controllability.
Example5.1 Please judge the state controllability of the following system.

uxx









































1
0
0

331
020
221

Solution: System matrix A and input matrix B are as follows























331
020
221

A ,

















1
0
0

B

 





















1131
000
820

2BAABBSc

32  nrankSc
Hence, system is not completely controllable.
Example5.2 Please judge the state controllability of the following system.

uxx






































1
0
0

6116
100
010

Solution: System matrix A and input matrix B are as follows




















6116
100
010

A

















1
0
0

B

 


















2561
610
100

2BAABBSc

nrankSc  3

Hence, system is completely controllable.
Example5.3 Please judge the state controllability of the following system.

uxx






































11
11
12

310
020
231

Solution: System matrix A and input matrix B are as follows
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
















310
020
231

A



















11
11
12

B

 



















442211
442211
452312

2BAABBSc

Number in the second row is proportional to that in the second row of judgment
matrix cS , 32  nrankSc ; hence system is not completely controllable.

In Multi-Input Multi-Output system, judgment matrix cS becomes more complicate;

and ensuring the rank of judgment matrix will become very difficult. The multiplication
T
cc SS  of judgment matrix cS and its transposition matrix T

cS is a square matrix, and

furthermore the non-singularity of matrix T
cc SS  is equal to that of matrix cS ; hence when

calculating the matrix which rows are less than its columns, people usually make use of the
relationship  Tccc SSrankrankS  to confirm the rank of judgment matrix cS .

Example5.4 Please judge the state controllability of the following system.

uxx




































00
10
01

301
010
121

Solution: System matrix A and input matrix B are as follows


















301
010
121

A

















00
10
01

B



















































01
10
21

00
10
01

301
010
121

AB ,


































































24
10
42

00
10
01

301
010
121

301
010
121

2BA

 

















240100
101010
422101

2BAABBSc

















21217
236
17626

T
cc SS

Obviously, the rank of matrix T
cc SS  is non-singular; hence judgment matrix cS is

full rank, and system is controllable.
Example5.5 Please judge the state controllability of the following system.

     kukxkx




































1
0
1

011
220
001

1

Solution: System matrix A and input matrix B are as follows
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

















011
220
001

A

















1
0
1

B

 

nrank

rankrankBAABBSc



























































3
200
220
111

420
220
111

311
220
111

2

Hence, system is completely controllable.

5.2.2 The second criterion of system controllability

If system matrix A is diagonal matrix, we will have simpler controllability judgment
criterion. Firstly, we should discuss whether the controllability of a system is kept after it is
transformed into another form by linear transform. This answer is yes. Linear transform
only changes state space of system, but the nature characteristic of system is not changed.
Controllability is one of system nature characteristics.

Theorem The controllability of linear time-constant(continuous or discrete) system
always keeps unchanged by any non-singular transform.

Demonstration: We assume that the state equation of linear time-constant continuous
system is as follows

BuAxxS 


: (5.17)

Equation(5.17) after a non-singular transformation
_
xPx  is the following:

uBxAxS
____

: 



(5.18)
In terms of controllability judgment criterion, the controllability matrix system S could

be expressed as follows:

 BABAABBrankrankS n
c

12   (5.19)

According to the relationship between system S and system
_
S :

_
1

_
, BPBPAPA   ,

we get
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 
























































_1__2____

_1__2____

_
1

1__
1

2__
1

__

12

BABABABPrank

BAPBAPBAPBPrank

BPPAPBPPAPBPPAPBPrank

BABAABBrankrankS

n

n

n

n
c









(5.20)

For transform matrix P is an reversible matrix, that’s to say, the rank of matrix P is full
rank, equation(5.20) yields

c

n

c rankSBABABABrankSrank 









 _1__2_____
 (5.21)

Obviously, controllability judgment matrices of system S and system
_
S have the same

rank. Namely, if original system is controllable, new system by linear transform is also
controllable. Hence, Through any non-singular linear transform, controllability of system
always keeps unchanged.

The second criterion of system controllability for different eigenvalues: Assuming
the state equation of a linear time-constant system is the following:

uBxx

n

__
2

1

_

00

00
00




































(5.22)

The sufficient and necessary condition of complete controllability of system state is

that input matrix
_
B does not include the row which all elements are zero in diagonal

canonical form gained after non-singular transform.
When we make use of this criterion to judge the diagonal standard of system, we

should note the condition that there are different eigenvalues in system matrix. For example,
please judge the following controllability of four given systems.

(1) uxx









































5
2
1

100
030
004

, this system is completely controllable.

(2) uxx









































5
0
1

100
030
004

, this system is not completely controllable.
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(3) uxx









































47
02
10

100
030
004

, this system is completely controllable.

(4) uxx









































47
02
00

100
030
004

, this system is not completely controllable.

Some matrix with multiple eigenvalues can be also transformed into diagonal
canonical form. For such system, above judgment criterion can not be utilized here. Then
we have to use the first judgment criterion of system state controllability. For example,
there is the following system:

u
x
x

x
x











































1
1

20
02

2

1

2

1

System matrix A has multiple eigenvalues; hence input matrix B has not the rows
which elements are zero, but it’s easy to judge that this system is not completely
controllable by the first method of controllability judgment criterion.

For the case that system matrix A has multiple eigenvalues, there is the following
theorem.

The second method of controllability judgment criterion for multiple eigenvalues

If a linear time-constant system BuAxx 


has multiple eigenvalues each of which has its
corresponding characteristic vector, the sufficient and necessary condition of complete
controllability of system state is that all elements of the row in input
matrix B corresponding to the last row of each Jordan small block iJ in system matrix A

are not all zero in the following Jordan canonical form by the non-singular transform.

uBx

J

J
J

x

k

__
2

1

_

0

0































(5.23)

The following systems are exampled to illustrate above theorem.

(1) u
x
x

x
x














































3
0

30
13

2

1

2

1 , this system is completely controllable.

After observing this state equation, we can know that there is only a Jordan block. The

element of the last row in input matrix
_
B is 3 which is not zero; hence this system is

completely controllable.

(2) u
x
x

x
x














































0
3

30
13

2

1

2

1 , this system is not completely controllable.
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Here is only a Jordan block in system matrix
_
A ,too. The element of the last row in

input matrix
_
B is 0; hence this system is not completely controllable.

(3) u

x
x
x
x

x
x
x
x





























































































03
00
20
00

4000
1400
0030
0013

4

3

2

1

4

3

2

1

, this system is completely controllable.

Here is two Jordan blocks in system matrix
_
A . All elements of the last row in input

matrix
_
B corresponding to the Jordan block in system matrix

_
A are not all zeros which are

respectively  20 and  03 ; hence this system is completely controllable.

(4) u

x
x
x
x

x
x
x
x





























































































23
00
00
20

4000
1400
0030
0013

4

3

2

1

4

3

2

1

, this system is not completely

controllable.

Obviously, there are two Jordan blocks in system matrix
_
A , too. The last row of the

first Jordan block in input matrix
_
B is  00 where all elements are zero. Hence, this

system is not completely controllable.

5.2.3 Output controllability and its judgment criterion

System controllability has been narrated in section5.22, then readers possibly ask whether system
output can be controlled in state space. The correct answer is that system output could be controlled. We
assume the generally linear time-invariant system is as follows:

BuAxx 


(5.24a)

DuCxy  (5.24b)

Here, nRx ; lRy ; mRu .

Definition of output controllablity For any an original output  0ty and another output  1ty , if

there exist a finite time  10 , tt and a segment input function  tu , they could make original output

 0ty be successfully transformed into predicted output  1ty ; we think that such system is output

controllable; otherwise such system output is not controllable.
Judgment criterion of output controllability The sufficient and necessary condition of output

controllability is the following:

  lDBCABCACABCBrankrankS n
ou  2 (5.25)
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Example5.6 Please judge the output controllability of the following system.

uxx 























2
1

32
14

,  xy 01

Solution: Relative matrix of this system are as follows














32
14

A , 









2
1

B ,  01C , 0D

The output judgment matrix ouS is the following:

    lrankCABCBrankrankSou  121

Hence, this system output is controllable. However, we easily know that system state
is not controllable.

Note that there is no common relationship between state controllability and output
controllability.

5.2.4 Controllability of linear time-variant system

A continuous-time system with the representations         tDtCtBtA ,,, is
considered in this section. The state equation of time-variant system is the following:

         tutBtxtAtx 


(5.26)

For a given input function  tu , the solution for the state at a fixed time 1t is

             duBttxtttx
t

t
0

,, 00 (5.27)

Here,  01, tt is the state transition matrix.

Controllability judgment criterion
The sufficient and necessary condition of state complete controllability for linear

time-variant system on the time interval  ftt ,0 is that Gram matrix is non-singular

which expression is the following.

           dtBBtttG TTt

tf
f ,,, 000
0
 (5.28)

Demonstration: Sufficiency of equation(5.28)
If Gram matrix  fttG ,0 were to be non-singular, reversible matrix  fttG ,0

1

would be existent. Select the following input function  tu .

         00
1

0 ,, txttGtttBtu TT   (5.29)

Now we need to analyze whether input function  tu makes original state  0tx of

system be converted into original point on the time interval  ftt ,0 . If the key is yes, it

demonstrates that there exist an input function  tu expressed in equation(5.29) and that

UNDER PEER REVIEW



Chaper5 Controllability and Observability for Linear System

- 227 -

system is completely controllable.
As we know, the solution of equation(5.26) is equation(5.27), namely:

             duBttxtttx
t

t
0

,, 00

Order ftt  and substitute equation(5.29) into above solution, we can get

           

               

                 

           
       
0

,,

,,,,

,,,,,

,,,,

,,

0000

00
1

0000

00
1

00000

00
1

000

00

0

0

0

























txtttxtt

txttGttGtttxtt

txttGdtBBttttxtt

dtxttGtBBttxtt

duBttxtttx

ff

ffff

t

t f
TT

ff

f
TTt

t ff

t

t fff

f

f

f











Hence, so long as Gram matrix  fttG ,0 is non-singular, time-varying system is completely

controllable. The sufficiency of equation(5.28) is demonstrated.
Now let’s demonstrate the necessity of equation(5.28). That’s to say, if system is completely

controllable, Gram matrix  fttG ,0 will be non-singular. Here, we utilize proof by contradiction to

prove the necessity of equation(5.28). If Gram matrix  fttG ,0 is singular, there will have non-zero

state vector  0tx which could satisfy the following equation:

      0, 000 txttGtx f
T

Namely,             0,, 0000
0

  dtxtBBttx TTt

t

Tf

              0,, 0000
0

  dtxtBtxtB TT
Tt

t

TTf

      0,
2

00
0

  dtxtBft

t

TT

But matrix     ,0tB TT is continuous for variable t , hence from above expression, we

have the following expression:
      0, 00 txtB TT 

Above state vector  0tx is controllable for we have assumed that given system is controllable.

In terms of the definition of controllability and equation(5.27), if some non-zero state vector  0tx
is controllable, the following expression is found:

            0,,
0

00    duBttxtttx ft

t fff

Namely,                  duBtduBttttx ff t

t

t

t ff   

00

,,, 00
1

0

             00000
0

, txdttutBtttxtxtx
Tt

t

T f





  
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Above expression shows that state vector  0tx is not arbitrary if it is controllable. This state vector

is only such expression:   00 tx . This conclusion is contradictory to given hypothesis.Hence the

hypothesis that Gram matrix  fttG ,0 is singular is not found. The necessity of equation(5.28) has

been demonstrated.
Example5.7 Please judge the output controllability of the following system.

ux
t

x 




















1
0

00
0

,  xy 01

Solution: System input matrix is the following:











1
0

B

(1) Ensure the state transition matrix
For the system matrix  tA satisfies the following relationship:

        









00
00

1221 tAtAtAtA

The state transition matrix  t，0 could be written into a closed form:

     












 



 

10
2
11

!2
10

2200 tdAdAEt
tt

 ，

(2) Calculate the controllability judgment matrix  ftG ,0

         

 










































































 







ff

fft

t

t

t

TTt

tf

tt

tt
dt

t

tt
dtt

t

dBBtG

ff

f

3

35

2

24

2

2

6
1

6
1

20
1

1
2
1

2
1

4
1

1
2
1

01
10

1
0

10
2
11

,0,0,0

00

0



(3) Judge the singularity of controllability judgment matrix  ftG ,0

  666

3

35

45
1

36
1

20
1

6
1

6
1

20
1

det,0det fff

ff

ff

f ttt
tt

tt
tG 






















For 0ft ,   0
45
1,0det 6  ff ttG . Hence system is controllable on the time

interval  ft，0 .

According to above example, we can easily know that the state transition matrix of
system has to be calculate firstly when the controllability of time-varying system is judged
in terms of equation(5.28). But if the state transition matrix of time-varying system is not
written into a closed form, above method will not be employed. In the following
paragraphs, we will introduce a practical judgment criterion of system controllability. This
criterion only utilizes system matrix  tA and input matrix  tB to judge system
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controllability.
Assume the state equation is the following:

         tutBtxtAtx 


(5.30)

Matrices  tA and  tB could be respectively derived for  2n order and  1n
order, which could be marked as

   tBtB 1

        nitBtBtAtB iii ,,3,211  



 ，

Order         tBtBtBtQ nc ,,, 21 

If a time ft makes

         ntBtBtBranktrankQ nc  ,,, 21  (5.31)

this system is completely controllable on the time interval  ft，0 .

Note that this judgment criterion is only a sufficient condition. If a system could not
satisfy above condition, we would not acquire the conclusion that system is not
controllable.

Example5.8 Please judge the output controllability of example5.7 by above judgment
criterion.

Solution:











1
0

1 BB

  




























01
0

00
0

112

tt
BBtAB

       






 


01
0

, 21

t
tBtBtQc

  t
t

tQc 






 


01
0

detdet

Obviously, if 0t , nrankQc  2 ; hence system is controllable on the time

interval  t，0 .

5.3 Observability of Linear System

If a system is described by the following dynamic equations

BuAxx 


(5.32a)
DuCxy  (5.32b)

then
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         dBuexetx
t tAAt  
0

0 (5.33a)

        DudBueCxCety
t tAAt    

0
0 (5.33b)

Since matrices A , B , C and D are known and input signal  tu is also known, the

last two terms on the right-hand side of this last equation(5.33b) are known quantities.

Therefore, they may be subtracted from the observed value of output  ty . Hence, for

investigating a sufficient and necessary condition for complete observability, it suffices to
consider the system described by the following equations.

Axx 


(5.34a)
Cxy  (5.34b)

5.3.1 Observability judgment criterion of time-invariant system

Now let’s consider the system described by equations(5.34a) and (5.34b). The output
vector  ty is

 0xCey At (5.35)
Referring to equation(3.35), we have

 









1

0

1

0

3322

!!
1

!3
1

!2
11

n

k

k
k

n

k

k
k

kkAt AtA
k
ttA

k
tAtAAte  (5.36)

Here,  
!k
tt
k

k 

Hence, we obtain

   





1

0
0

n

k

k
k xAtCy 

or
           000 1

110 xCAtCAxtCxty n
n


   (5.37)

If the system is complete controllability, then, given the output  ty over a time

interval 10 tt  ,  0x is uniquely determined from equation(5.37). It was shown that this
requires the rank of the judgment matrix to be n .

The first judgment criterion of complete state observability The sufficient and
necessary condition of complete state observability of linear time-invariant system is that
the rank of judgment matrix oS is full rank or that determinant of judgment matrix oS is

non-singular, namely,
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n

CA

CA
C

rankrankS

n

o 





















1


(5.38)

Here judgment matrix oS is called observability judgment matrix.

Example5.9 Please analyze the state controllability and state observability of the
following system.

u
x
x

x
x












































1
0

12
11

2

1

2

1

  









2

101
x
x

y

Solution:

  2
11
10











 ABBrankrankSc

Hence, system is completely state controllable.
For output controllability, let us find the rank of the matrix  CABCB .

    110  rankCABCBrankrankSou
Hence, system is completely output controllable.

For state observability, examine the rank of  TTT CAC or 







CA
C

.

  2
10
11









 rankCACrankrankS TTT

o

Hence, system is completely state observable.
Example5.10 Please analyze the state observability of the following system.

     kukxkx





































1
1
2

203
120
101

1 ,    kxky 









001
100

Solution:

nrank
CA
CA
C

rankrankSo 















































 32

302
109
101
203
001
100

2

Hence, system is not observable.
Conditions for complete observability in the s plane. The conditions for complete
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observability can also be stated in terms of transfer function or transfer matrices. The
necessary and sufficient conditions for complete observability is that no cancellation occurs
in the transfer function or transfer matrix. If cancellation occurs, the canceled mode can not
be observed in the output.

Example5.11 Please analyze the state observability of the following system.

u
x
x
x

x
x
x

x















































































1
0
0

6116
100
010

3

2

1

3

2

1

,  xy 154

Note that the input signal  tu does not affect the complete observability of the

system.To examine the complete state observability, we can simply set   0tu . For this
system, we have

  





















111
575
664

2 TTTTT
o CACACS

0
111
575
664

detdet 




















oS

Hence, the rank of judgment matrix oS is less than 3. Therefore, system is not

completely state observable.
In fact, in this system, cancellation occurs in the transfer function of the system.The

transfer function between  sX1 and  sU is

 
     321

11




ssssU
sX

And the transfer function between  sY and  sU is

 
    411  ss
sU
sX

Therefore, the transfer function between  sY and  sU is

 
 

  
   321

41





sss
ss

sU
sY

Clearly, the two factors  1s cancel each other. This means that there are nonzero

initial states, which can not be determined from the output measurement of  ty .
The transfer function has no cancellation if and only if the system is completely state

controllable and completely observable. This means that the canceled transfer function does
not carry along all the information characterizing the dynamic system.
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5.3.2 The second criterion of complete state observability

If dynamic system is transformed into a diagonal canonical form, there will be a
simpler judgment criterion of state observability. Now let us continue to discuss the
complete state observability for diagonal canonical form.

Theorem The observability of linear time-constant(continuous or discrete) system
always keeps unchanged by any non-singular transform.

Demonstration: We assume that the state equation of linear time-constant continuous
system is as follows

BuAxxS 


: (5.39)

Equation(5.17) after a non-singular transformation
_
xPx  is the following:

uBxAxS
____

: 



(5.40)
In terms of observability judgment criterion, the observability matrix system oS could

be expressed as follows:





















1

0

nCA

CA
C

rankrankS


(5.41)

According to the relationship
_
xPx  between system S and system

_
S :

_
1

_
, BPBPAPA   , 1

_
 PCC , we get

_

1__

__

_

1
1__

1
__

1
_

1
1_

1
_

1
_

1
_

1
_

0 o

nnn

Srank

AC

AC
C

rank

PAC

PAC
PC

rank

PAPPC

PAPPC
PC

rankrankS 






















































































(5.42)

Hence, any non-singular transform can not change the observability of a system for

the eigenvalues of original system matrix A and new system matrix
_
A are same.

Complete state observability for diagonal canonical form with distinct

eigenvalues If linear time-constant system which dynamic equations is BuAxx 


,
Cxy  has distinct eigenvalues, the sufficient and necessary condition of complete state

controllability is that elements in column of output matrix
_
C are not all zero by

non-singular transform.
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uBxx

n

__
2

1

_

0

00
0



































, xCy
_

 (5.43)

For example, the observability of the following system is easily known. Here note that
there are distinct eigenvalues.

(1) xx
























200
050
006

,  xy 532 ; system state is completely observable.

(2) xx
























200
050
006

,  xy 502 ; system state is not completely observable.

In reality, eigenvalues of system are perhaps multiple. If every multiple eigenvalue is
only corresponding to a characteristic vector, system could be transformed into a Jordan
canonical form, namely

uBx

J

J
J

x

n

__
2

1

_

0

00
0






























, xCy
_

 (5.44)

Complete state observability for diagonal canonical form with multiple
eigenvalues If a system could be transformed into a Jordan canonical form shown in
equation(5.44), the sufficient and necessary condition of complete state observability is that

those columns in output matrix
_
C which is corresponding to the first row of each Jordan

block are not zero columns.
For example, let’s judge the observability of the following systems.

(1) xx 













20
12

,  xy 02 ; system state is completely observable.

(2) xx 













20
12

,  xy 20 ; system state is not completely observable.

(3) xx






















300
020
012

, xy 









230
001

; system state is completely observable.

5.3.3 Observability of linear time-variant system

In time-variant system, system matrix  tA , input matrix  tB and output matrix  tC
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are both the function of time. The corresponding judgment criterion is different from that of
time-constant system.Hence, it’s necessary to explore the judgment criterion of
time-invariant system. We should utilize the Gram matrix and non-singular transform to
give out judgment criterion.

Before analyzing the observability of linear time-variant system, we firstly explore the
following points:

(1) Time interval  ftt ,0 is an observing time of recognizing original state of system

 0tx ; for time-variant system, this time interval is relative to the selection of original

time 0t .

(2) If a system is not observed, the following relationship should be found:
      0, 00 txtttC  ,  fttt ,0 (5.45)

(3) Non-linear transform of system does not change original observability of system.
Demonstration: If original state  0tx of system is not observable, the following

relationship has to be satisfied:
      0, 00 txtttC 

Assuming that transform matrix is sign P , we obtain:
_
xPx  , CPC 

_
,     1

_
 PtCtC

After above expressions are substituted into equation(5.45), we can get

      0, 0

_

0
1

_
 txPttPtC 

      0, 0

_

0

__
txtttC 

Hence, original state  0
_
tx is not observable. That’s to say, non-linear transform does

not change system observability.
(4) If original state  0tx is not observable, new state  0tx is not observable, too;

note that coefficient is a nonzero real.
Demonstration: If original system state  0tx is not observed, we can get

      0, 00 txtttC 

Then,
      0, 00 txtttC 

Hence, new state  0tx is not observed, too.

(5) If original states  01 tx and  02 tx are not observable, new state    0201 txtx 

would be not observable, too.
Demonstration:If original states  01 tx and  02 tx are not observable, we could gain

            0,, 020010  txtttCtxtttC 

Then,
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                     0,,, 02010020010  txtxtttCtxtttCtxtttC 

Hence, new state    0201 txtx  is not observable,too.

A time-variant system is as follows:

   
 










xtCy
utBxtAx (5.46)

Judgment criterion of complete output observability for time-variant system
The sufficient and necessary condition of complete state observability in time-variant

system on time interval  ftt ,0 is that the following Gram matrix is non-singular matrix.

         dttttCtCttttG ft

t

TT
f 000 ,,,

0

 (5.47)

Demonstration: The solution of equation(5.46) is the following:

             duBttxtttx ft

t
0

,, 00

Then system output is

                     duBttCtxtttCtxtCty ft

t
0

,, 00

When ensuring the state observability, we may neglect the role of input signal  tu .
And then above two equations will be converted into the following expressions:

     00, txtttx 

       00, txtttCty 

Expression    tCtt TT
0, is multiplied into system output equation to yield

               0000 ,,, txtttCtCtttytCtt TTTT  

Integration on time interval  ftt ,0 is applied to above equation and then we gain

                    
ff t

t f
TTt

t

TT txttGdttxtttCtCttdttytCtt
00

000000 ,,, 

Obviously, when Gram matrix  fttG ,0 is non-singular matrix, system output  ty
would uniquely ensure state  0tx .

Gram matrix could be used to judge the complete state observability of time-variant
system, but its calculation work is very large. In the following, a simpler method is
introduced to judge the complete state observability of time-variant system.

Assume that system matrix  tA and output matrix  tC for time variable t could be

continuously differentiated respectively for  thn 2 order and  thn 1 order, which is
marked as

   tCtC 1

        nitCtAtCtC iii ,,3,211  





Order,
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 

 
 

 



















tC

tC
tC

tR

n


2

1

(5.48)

On time interval  ftt ,0 , if 0ft and   ntrankR  , system state is observable.

Example5.12 Please judge the state observability of the following system.

 

 































xy

utBx
t

t
t

x

101
00

00
01

2

Solution: System matrix  tA and output matrix  tC are as follows:

 

















200
00
01

t
t

t
tA ,    101tC

     1011  tCtC

         2112 1 tttCtAtCtC 


         tttttCtAtCtC 221 42
223 



 
 
 
  




































tttt
tt

tC
tC
tC

tR
221

1
101

42

2

3

2

1

Obviously, when 0t ,   ntrankR  3 ; hence system state is completely observable

on time interval  t，0 .
Note that this method is only a sufficient condition. If some condition could satisfy

above method, we could not draw such conclusion that system is not observable.

5.4 Diagonal Canonical Form of State Space Expression

As we have known, dynamic equations of system could be transformed into diagonal
canonical form by non-singular transformation. Such mode is very helpful for analyzing
and designing control system. In this section, we will discuss how to transform a system
matrix into a diagonal canonical form. If readers have learned the knowledge of this section,
readers may neglect the content of this section.
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5.4.1 System eigenvalue and characteristic vector

If a nonzero vector exists in vector space, which satisfy the following equation,
 A (5.49)

sign  is called the eigenvalue of matrix A . Any nonzero vector which could satisfy
equation(5.49) is called characteristic vector which is corresponding to eigenvalue  of
matrix A .

According to above definition, we try to acquire the characteristic value of matrix A .
Equation(5.49) is written into equation(5.50):

  0  AE (5.50)
The sufficient and necessary condition that above non-homogeneous equation(5.50)

has nonzero solution is that the determinant of expression  AE  is zero, namely:

  0det  AEAE  (5.51)

Equation(5.51) is called characteristic equation. The following developed polynomial
of determinant  AE det is called the characteristic polynomial of system matrix A .

  nn
nnn aaaaAE  
  1
2

2
1

1det  (5.52)

Roots of characteristic equation(5.52) is called eigenvalue of matrix A . According to
the definition of above characteristic vector, we may know that characteristic vector is
connected to eigenvalue together. If we want to calculate characteristic vector, we should
firstly calculate system eigenvalues. Now let’s analyze the following examples.

Example5.13 Please calculate the characteristic vector of the following matrix A .























5116
6116
110

A

Solution:(1)calculate the characteristic value of matrix A .

  06116
5116
6116
11

detdet 23 




















 





 AE

The solution of above equation is 11  , 22  , 33  .

(2)calculate the characteristic vector of eigenvalue 11  .

We assume that characteristic vector is  T3121111   , and substitute 1 and

1 into equation(5.50). We could get the following equation:

  011   AE

Namely, 0
5116
6116
110

00
00
00

31

21

11

1

1

1





















































































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0
6116
6106

312111

312111

312111




























Then we can get the following equation group:















06116
06106

0

312111

312111

312111






Solve above equation group and we acquire
021  , 3111  

11 and 31 may is any nonzero value. Here we take 13111  , corresponding

vector is:  T1011  .
Similarly, other two vectors are also calculated which are respectively:

 T4212  ,  T9612 

5.4.2 System matrix A transformed into diagonal matrix

1.Distinct eigenvalues of matrix A
When matrix A has distinct eigenvalues, we can assume  nP  21 in

which each characteristic vector i has its own characteristic vector. Then there is the

following relationship:



















 

n

APPA












00

00
00

2

1

1
_

(5.53)

Namely, when system matrix A has distinct eigenvalues, we could transform
matrix A into diagonal matrix which each element at diagonal line is respectively the
eigenvalue of system matrix A by transform matrix P which is composed of characteristic
vectors.

Here, we should note that the aim of constructing transform matrix P is not to

calculate new system matrix
_
A , but to solve the reversible matrix 1P and to calculate new

matrix
_
B and

_
C .

Example5.14 Please convert the following dynamic equations into diagonal canonical
form.

uxx









































1
0
0

5116
6116
110

,  xy 001
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Solution: We have gotten the eigenvalues and vectors of system matrix A from
example5.13.

11  , 22  , 33 


















1
0
1

1 ,

















4
2
1

2 ,

















9
6
1

3

Hence, transform matrix P is the following:

 

















941
620
111

221 P























15.11
343
25.23

1P ,







































300
020
001

00
00
00

3

2

1_





A


























































 

1
3
2

1
0
0

15.11
343
25.23

1
_

BPB ,    111
941
620
111

001
_

















 CPC

Then the diagonal canonical form of dynamic equation is

uxx













































1
3
2

300
020
001

__
,  

_
111 xy 

2.Associate matrix of distinct eigenvalues of matrix A



























 121

1000

0100
0010

aaaa

A

nnn 






(5.54)

Transform matrix P which make system matrix A be converted into diagonal matrix
is a Vandermonde matrix, namely

























 11
3

1
2

1
1

22
3

2
2

2
1

321

1111

n
n

nnn

n

n

P













(5.55)

In equation(5.55), 1 , 2 , , n are distinct eigenvalues of matrix A .

Example5.15 Please convert the following system matrix into diagonal matrix.
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


















6116
100
010

A

Solution: (1) calculate the eigenvalues of system matrix A .

  06116
6116
10
01

detdet 23 




















 





 AE

We solve above equation to get corresponding solution: 11  , 22  , 33  .

Hence, transform matrix is the following:

















941
321
111

P

Diagonal matrix is the following:























300
020
001

_
A

3.Matrix A has multiple eigenvalues but n independent characteristic vectors
For this case, we take  nP  21 to make system matrix A become a

diagonal matrix.
Example5.16 Please convert the following system matrix into diagonal matrix.















 


200
010
101

A

Solution: Characteristic equation is the following:

      021
300

020
101

det 2 





 





 AEAE

Characteristic roots are respectively: 221   , 23  .

Acquire the characteristic vector of eigenvalue 1 or 2 .

  011   AE

Substitute eigenvalue 1 into above equation:

0
100
000
100

31

21

11


































 



Solution is 031  ; obviously 21 and 11 are not constrained, which are any
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nonzero value. If 21 and 11 are independent value, we think that they are the solution
of above equation. Here two independent vectors are taken as follows:


















0
0
1

1 ,

















0
1
0

2

Obviously, these two vectors are independent.
Solve the characteristic vector of eigenvalue 3 .

  033   AE , 0
200

010
101

33

23

13

3

3

3
















































Namely, 0
000
010
101

33

23

13






































After simplifying above equation group, we could get :









0
0

23

3313




Order 113  , we can get characteristic vector:    TT 1013323133   .

Hence, transfer function is such:

 














 


100
010
101

321 P ,

















100
010
101

1P

We easily testify the diagonal system matrix
_
A :

































 

3

2

1
1

_

00
00
00

200
010
001





APPA

5.4.3 System matrix A transformed into Jordan matrix

If system matrix A is not transformed into diagonal matrix, it has to been transformed
into Jordan matrix which is similar to diagonal matrix.

1. The definition of Jordan block and Jordan matrix
Matrix form is as follows:





























00
100
00
01

(5.56)
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Matrix block as equation(5.56) is called Jordan block. Quasi diagonal matrix which is
composed of a lot of Jordan blocks is called Jordan matrix. In Jordan matrix, every Jordan
block which is located in the diagonal of matrix is called Jordan block. The Jordan matrix
is the following:

































3

2

2

1

1

1

1

1

0000000
0000000
0100000
0000000
0001000
0000100
0000000
0000001













In above matrix, eigenvalue 1 which has five characteristic vectors constitutes two

Jordan blocks; eigenvalue 2 constitute a Jordan block.
For common matrix, even if eigenvalues have been solved, it is very difficult to gain

the corresponding transfer function P except some special cases.
2. General characteristic vector
If system matrix A has some multiple characteristic roots, the number of independent

state vectors which is ensured by equation   0  AE is less than the dimension of
system matrix A . To form a transfer matrix P , we need to confirm some characteristic
vectors which is called general character vector.

(1)Definition of general character vector

When   0  kAE and   01    kAE , vector is called general characteristic
vector of system matrix A .

(2)General character vector group
We assume that sign  is general characteristic vector which is produced by system

matrix A which eigenvalue and rank are respectively  and k . And the following
expression group is always found:

   
   

    2
1

1

1
2

2

1








EAEA

EAEA
EAEA

k

kk

kk

k















(5.57)

The row vector  k 21 is called the general eigenvector group of

eigenvalue .
(3)Transform matrixP
Transform matrix P which converts system matrix A into Jordan matrix is composed

of the general characteristic vector group of each eigenvalue, namely:
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 nP  21 (5.58)

Here, give an example to illustrate above theories.
Example5.17 Please convert the following system matrix into Jordan matrix.


















200
310
211

A

Solution: Characteristic equation is the following:

      0211
200
310
211

det 




 





 AEAE

The solution solved is: 121   , 23  .

 

















100
300
210

1EA  ,   21  EArank 

Since the rank of expression  EA 1 is 2, there is only one independent

characteristic vector of eigenvalue 121   . General eigenvalue has to be acquired and
constructed according to equation(5.57). In this example, nonzero vector needs to satisfy
the following equations.

  03
2

100
300
210

31

31

3121

31

21

11

1 














 











































 EA

  0
4
6
7

400
600
700

31

31

31

31

21

11
2

1 


























































 EA

After solving expression   02
1   EA , we can gain 031  . Hence, we can acquire

  0
0
0
21

1 


















 EA

Then 021  , and we should note that 11 could get any value. We get the following
values for variables:

121  , 031  , 011 

According to equation(5.57), we can get the general characteristic vector of
eigenvalue 121   .

 T010 ,  T0102 

The second characteristic vector 1 is the following:

UNDER PEER REVIEW



Chaper5 Controllability and Observability for Linear System

- 245 -

 


















































0
0
1

0
1
0

100
300
210

211  EA

Hence, the general characteristic vector group is expressed as follows:

 

















00
10
01

21 

Calculate the eigenvector  T3332133   of eigenvalue 23  .

  033   EA

Namely,

0
000
310
211

200
020
002

200
310
211

33

23

13

33

23

13















































































































Above matrix equation could be written into the following equation group:









03
02

3323

332313




Solve this equation group and gain the following expressions:

3323 3  , 3313 5 

Take 133  and then get corresponding vector:    TT 1353332133   .

Hence, transform matrix P which can transform system matrix A into Jordan matrix
is the following:

 

















100
310
501

321 P

Jordan matrix of system matrix A is the following:
















 

200
010
011

1
_

APPA

This Jordan matrix includes two Jordan blocks.

5.4.4 Pattern matrix

When the eigenvalue of matrix is complex, above method is suitable; but the element
at diagonal will be complex. In order to avoid that the matrix which includes complex
appears, we need to utilize pattern matrix to express such complex case.

If a matrix has m eigenvalues and l complex eigenvalue groups, linear transform
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matrix P could transform system matrix A into the following form:



































l

m

M

M
M

A

0

0

2

1

2

1

_









(5.59)

In expression(5.59), 










ii

ii
iM




,  li ,,3,2,1  ; matrix
_
A in equation(5.59) is

called pattern matrix.
If the number of j -th complex eigenvalues is r , and if the number of corresponding

characteristic vector is one, complex characteristic value jM could be written into the

following form:

rrj

j

j

j

j

T
E

T
ET

ET

M

22
000

000
00
00
































(5.60)

In expression(5.60), 










jj

jj
jT 


, 










10
01

E .

If matrix A has multiple characteristic values, the corresponding parts in matrix
_
A

can be written into Jordan blocks. Pattern matrix is not diagonal matrix, but its elements is
composed of the components of eigenvalue. Then transform matrix P will become real
matrix. Hence, pattern matrix could avoid the calculation of complex matrix.

Example5.18 Please convert the following system matrix into pattern matrix.












22
10

A

Solution: Step1, calculate the characteristic roots of characteristic equation.

022
22
1 2 



 



 AE

Characteristic roots are: j 11 , j 12 .

Step2, acquire the characteristic vector 1 of eigenvalue 1 .

  0
212

11

212111

112111

21

11
11 








































j
j

j
j

EA
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Here, we assume 1111 jba  , 2221 jba  ; and then there is the following
equation group:








022
0

222211

112211

bjajbabja
bjajbajba

Arrange above equation group and then gain
   
   






022
0

221212

121121

abbjaab
abbjbaa

The condition that complex is zero is that real and imaginary parts are zero; hence we
have:

















02
02

0
0

221

212

121

121

abb
aab
abb
baa

Eliminate redundant equations and then gain








212

211

2 aab
aab

Order 11 a , 12 a and then we can know 01 b and 12 b . Hence,

111 1
0

1
1

1
1

 jj
j






























 , 










1
1

1 , 









1
0

1

Transform matrix P is

  










11
01

11 P

Pattern matrix is

















































 




11
11

11
01

22
10

11
011

_
APPA

Generally, if the eigenvalues of a 22 matrix A are  j1 and

 j2 , matrix A could be transformed into pattern matrix
_
A which transform

matrix is  11 P . Here, sign 1 and sign 1 are respectively real and imaginary of

complex, namely, 111  j .

For nn matrix, if there are 2n different eigenvalues 21 n  and a pair of

complex eigenvalue  j , such matrix could be transformed and simplified into the
following pattern matrix:
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






































000
000

00
00

00
000

2

2

1

_










n

A (5.61)

Its transform matrix P is
 11221   nP  (5.62)

In equation(5.62),  2,,3,2,1  nii  is the corresponding vector of distinct

eigenvalue i . Sign 1 and sign 1 are respectively real and imaginary of conjugate

complex characteristic vector.

5.5 Dual relation between controllability and observability

There exists in internal relationship between controllability and observability. Such
internal relation could be confirmed by dual principle which is firstly put forward by
Kalman. That’s to say, a controllability of system is equal to the observability of its dual
system.

5.5.1 Dual relation of linear system

We assume that there are two systems. One system 1 is

11111 uBxAx 


, 111 xCy 

Another system 2 is

22222 uBxAx 


, 222 xCy 

If the following conditions could be satisfied, we think that system  1 and

system 2 are dual.
TAA 12  , TCB 12  , TBC 12  (5.63)

In equation(5.63), vectors 1x and 2x is state vectors with n dimension; input control signals

1u and 2u are respectively r -dimension and m -dimension control vectors; output control signals

1y and 2y are respectively m -dimension and r -dimension output vectors; matrix 1A , 2A —system

matrix; control matrix 1B , 2B — rn and mn control matrix; matrix 1C , 2C — nm and

nr output matrix.

Obviously, system  1 is a r -input and m -output and n -order system, its dual
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system 2 is a m -input, r -output and n -order system. The block diagram of dual

systems  1 and  2 is shown in figure5.3.

Figure5.3 Simulating structural diagram of dual systems
From the block diagram of figure5.3, we obviously know that inputs and outputs

exchange in dual systems and that the direction of signal delivery is opposite and that
corresponding matrix is transposed and that comparing point and outlet point are
exchanged.

Observing above block diagram from the viewpoint of transfer matrix, we can get the
transfer function  sG1 in figure5.3(a) which is a rm matrix.

    1
1

111 BAsECsG  (5.64)

The transfer function  sG2 in figure5.3(b) is a mr matrix which is as follows:

         TTTTTT CAsEBCAsEBBAsECsG 1
1

111
1

112
1

222
  (5.65)

Transpose the transfer matrix  sG2 and then gain

         1
1

111
1

112 BAsECCAsEBsG
T

TTTT   (5.66)
Obviously, the transfer matrices of dual systems transpose each other. Similarly, the

input-state transfer function of a system and state-output transfer function of dual system
transpose each other. However, state-output transfer function of original system and
input-state transfer function of dual system transpose each other, too.

Of course, we need to point out that the characteristic equations of each other dual
systems are also same, namely

21 AsEAsE  (5.67)

for the following expression is always found.

221 AsEAsEAsE T  (5.68)

5.5.2 Dual principle

If system  1111 ,, CBA and system  2222 ,, CBA are each other

dual systems, the controllability of system 1 is equal to the observability of system 2 ,

and the observability of system 1 is equal to the controllability of system 2 . Or,

that’s to say, if the system 1 is completely controllable(observable), the dual system 2
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will be completely observable (controllable).
Demonstration:
For system 1 , judgment matrix of system controllability is the following:

 21
22

2
22222 BABABABS n

c
 

If nrankSc 2 , the state of system 1 is completely controllable.

The relationship in equations(5.63) is substituted into above judgment matrix 2cS and

then we get

     TTnTTTTTT
c o

SCACACACS
11

2
11

2
11112 



This expression demonstrates that the rank of observable judgment matrix 1oS of

system 1 is n , and then it also shows that system 1 is completely observable.

Similarly,      11
1

11112
1

22222 c
nTnTTTTT SBABABCACACS

o
  

Namely, if the rank of observable judgment matrix 2oS is full rank, system 2 is

completely observable; then the rank of controllable judgment matrix 1cS is full rank,

system 1 is completely controllable.

5.5.3 Dual principle of time-variant system

For time-variant systems       tCtBtA 1111 ,, and

      tCtBtA 2222 ,, , if the following relationship is found, system  1 and

system 2 are each other duality.

   
   
   














tBtC

tCtB

tAtA

T

T

T

12

12

12

(5.69)

According to above definition, we may deduce that their state transfer matrices
transpose each other, namely

   0102 ,, ttttT   (5.70)

In equation(5.70),  01 , tt is the state transfer matrix of system 1 ,  02 , tt is the

state transfer matrix of system 2 .

Demonstration:
For system 2 , we can gain the following state equation:

           tutCxtAtutBxtAx TT
212122222 



(5.71)
Its state transfer matrix should satisfy the following differential equation:
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     
 








Ett
tttAtt T

002

02102

,
,,




(5.72)

Transpose equation   Ett 002 , and we acquire

  EttT 002 , ,     Etttt TT 0202 ,, 

Differentiate above matrix equation and yield

     0,, 0202 tttt
dt
d TT 

        0,,,, 02020202 


tttttttt
T

TT
T



Namely,

       tttttttt T
T

T
T

,,,, 02020202 


 (5.73)

Transpose equation(5.72) and we can know
     tAtttt TT

10202 ,,  

Above expression is substituted into equation(5.73) and we can gain:

             tttAtttAtttttt TTTT
T

,,,,, 021021020202  


According to the property of state transition matrix,  ttT ,02 has to be the state

transition matrix of the following system.

  111 xtAx 


Namely,    tttt T ,, 0201  

That’s to say, system 1 and system 2 are each other dual systems which state

transition matrices are each other transposition matrix. Hence we can gain the dual
principle of time-variant system: the observability of system 1 is equivalent to the

controllability of system 2 , the controllability of system 1 is equivalent to the

observability of system 2 .

5.6 Controllability and Observability Standardization of

State Space Expression

As we have known, for a same system there may be different state space expressions,
some specific form is called canonical form.It is very helpful for control system design to
standardize the state space expression. For example, diagonal form is conveniently utilized
to judge the controllability and observablity of system, but it is not perhaps suitable for
state feedback design. In this section, controllable canonical form and observable canonical
form will be introduced to help readers design state feedback components or state observer.
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Let’s firstly discuss the linear continuous and discrete time-invariant systems which

are marked as  cbA ,, . The system by linear transform is marked as






 ___

,, cbA .

Non-singular transform will not change the controllability and observability of system.
For linear time-invariant continuous system with one input, the state space expression

of system could be expressed as the following:

     
   










tcxty
tbutAxtx (5.75)

System transfer function is

 
01

1
1

01
2

2
1

1

asasas
bsbsbsbsG n

n
n

n
n

n
n




 









 (5.76)

Linear transform is

   txPtx
_

 or    tTxtx 
_

(5.77)
The state equation after linear transform is

   

   













txcty

tubtxAx
__

___

(5.78)

For discrete system, the state space expression is

     
   










kcxky
kbukAxkx 1 (5.79)

Linear transform is

   kxPkx
_

 or    kTxkx 
_

(5.80)
The state equation after linear transform is

     

   









kxcky

kubkxAkx
__

___
1

(5.81)

5.6.1 First controllable canonical form

Definition: the state equation with the following form is called first controllable
canonical form.
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

























110

_

100

010

naaa

A







,

























1
0

0
0

_

b (5.82)

The controllable canonical form is limited to the form of matrix A and column
vectorb . Sign c can be arbitrary.

Theorem The state equation with first controllable canonical form is controllable. Any
a controllable state equation can be transformed into first controllable canonical form by

non-singular form Txx 
_

.

























1
1

2
1

1

1

nAT

AT
AT
T

T


,   1
1 100  cST  ，  bAAbbS n

c
1  (5.83)

Example5.19 Please transform the following state equation into first controllable
canonical form.

uxx 





















1
1

21
01

Solution: Step1, check the controllability of system.

. 






 


31
11

cS ， 2crankS

According to judgment criterion of controllability, system state is controllable, hence
given system could be transformed into first controllable canonical form. System
characteristic equation is

  23
21

01
det 2 




 ss
s

s
AsE

According to equation(5.82), first controllable canonical form is the following:












32
10_

A , 









1
0_

b

Step2, acquire transform matrixT .








 


2121
21231

cS ,   



 

2
1

2
110 1

1 cST

Hence, transform matrixT is the following:




















10
2121

1

1

AT
T

T

Step3, validate canonical form.
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






 


10
121T , 

















 

















 

32
10

10
12

21
01

10
21211

_
TATA




























1
0

1
1

10
2121_

Tbb

Example5.20 Please transform the following dynamic equations into first controllable
canonical form.

uxx




































1
1
2

020
113
021

,  xy 100

Solution:
Step1, check system controllability.


















1221
861
1642

cS ,























25.00125.0
025.0125.0
25.075.1

1
cS

0cDetS , 3crankS ; hence given system is controllable which could be

transformed into controllable canonical form. System characteristic equation is the
following:

  29
20

113
021

det 3 





 ss
s

s
s

AsE

The first controllable canonical form is such:




















092
100
010

_
A ,


















1
0
0

_
b

Step2, acquire transform matrixT
   25.00125.0100 1

1  
cST ,  025.0125.01 AT

   25.05.0625.0
020
113
021

025.0125.02
1 
















AT

Transform matrixT is the following:







































25.05.0625.0
025.0125.0
25.00125.0

2
1

1

1

AT
AT
T

T

Step3, check the validity of controllable canonical form.
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



















123
161
242

1T ,






















































1
0
0

1
1
2

25.05.0625.0
025.0125.0
25.00125.0

_
Tbb











































































 

092
100
010

123
161
242

020
113
021

25.05.0625.0
025.0125.0
25.00125.0

1
_

TATA

 1231
_

 cTc

5.6.2 Second controllable canonical form

Definition: State equation with the following form is called the second controllable
canonical form.






























1

2

0

_

10

01
00

n

n

a
a

a

A







,





















0

0
1

_


b (5.84)

Theorem: The state equation with the second controllable canonical form is
controllable. Any a controllable state equation can be transformed into the second

controllable canonical form which linear transform is
_
xPx  . Here transform matrix P is

the following:
 bAAbbSP n

c
1  (5.85)

Example5.21 Please transform system in example5.20 into second controllable
canonical form.

Solution:
In terms of the result of example5.20, we can know the judgment matrix of

controllability which is also transform matrix of the second controllable canonical form.


















1221
861
1642

cSP ,





















 

25.00125.0
025.0125.0
25.075.1

11
cSP

Testify the correctness of transform matrixP .















 
 

010
901
200

1
_

APPA ,















 

0
0
1

1
_

bPb

   1221
1221
861
1642

100
_

















 cPc
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5.6.3 First observable canonical form

Definition: State space expression with the following form is called the first
observable canonical form.






























1

2

0

_

10

01
00

n

n

a
a

a

A







,  100
_

c (5.85)

Note that the observable canonical form is only limited to given form of matrices A ,
c ; matrixb may be arbitrary.

Theorem Dynamic equation with the first observable canonical form is observable.
Any an observable dynamic equation is both transformed into the first observable canonical

form which transform relation is
_
xPx  . Transform matrix P can be ensured through the

following expressions.
 11

1
2

11 pApAAppP n  (5.86a)

























































 



 1
0

0

1
0

0

1

1

1

1


 o

n

S

cA

cA
c

p (5.86b)

Example5.22 Please transform the following dynamic equations into first observable
canonical form.

uxx




































1
1
2

020
113
021

,  xy 100

Solution:
Step1, check given system observability.





































226
020
100

2cA
cA
c

So , 0det oS , 3orankS

Hence, given system is observable and it can be transformed into first observable
canonical form. System characteristic equation is such:

  029
20

113
021

det 3 





 ss
s

s
s

AsE

In terms of equation(5.85), we can get the first observable canonical form:
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













 


010
901
200

_
A ,  100

_
c

Step2, gain the transform matrix P .


















001
0210
616131

1
oS

In terms of equation(5.86), we can gain the transform matrix P .

































 

0
0
61

1
0
0

1
1 oSp ,


















0
21
61

1Ap ,

















1
0
67

1
2 pA

 

















100
0210
676161

1
2

11 pAAppP

5.6.4 Second observable canonical form

Definition: State space expression with the following form is called the second
observable canonical form.























110

_

1
00

010

naaa

A







,  001
_

c (5.87)

Theorem Dynamic equation with the second observable canonical form is observable.
Any an observable dynamic equation is both transformed into the second observable

canonical form which transform relation is Txx 
_

. Transform matrix T can be ensured
through the following expressions.





















1n

o

cA

cA
c

ST


(5.88)

5.7 Canonical Decomposition of Linear System

If a system is not completely controllable and observable, this system includes
uncontrollable and unobservable subsystems. As we know, non-singular linear transform
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does not change the controllability and observability of given system, hence system state
equation can be divided into controllable and observable, controllable and unobservable,
uncontrollable and observable, uncontrollable and unobservable subsystems.Then system
structure characteristics can be further discovered.

5.7.1 Canonical decomposition of controllability

Assume that the dynamic equation of linear time-invariant system is as follows:












Cxy
BuAxx (5.89)

If equation(5.89) is completely controllable, namely the rank of controllable judgment

matrix cS is nn 1 , a non-singular transform relation
_
xPx c makes given system become

the following form:

uB
x
x

A
AA

x

x c

c

c

c

c

c

c



























































00

_

_

_

_
12

__

_

_

__
_

(5.90a)


















_

_

_

_
__

c

c
cc

x
xCCy (5.90b)

Among equation(5.90), 1n -dimension subsystem is controllable, which could be
expressed as follows:

uBxAx cccc

____




(5.91a)

cc xCy
__

1  (5.91b)

Figure5.3 System decomposition in terms of controllability
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State structure diagram of equation(5.90) is shown in figure5.3. Observing the
diagram in figure5.3, we can know that control signalu does not affect non-controllable

state
___

__
c
x of system.

The method of ensuring non-singular linear transform matrix cP is as follows:

The rank of controllable judgment matrix cS is nn 1 , namely,

  nnBAABBrankrankS n
c  

1
1

We can ensure 1n linearly independent column vectors
1

,, 21 nppp  and then

we can arbitrarily select  1nn linearly independent column

vectors nnn ppp ,,, 21 11
 which is not related to vectors

1
,, 21 nppp  . Hence,

non-singular linear transform matrix P of controllability structure decomposition is as
follows:

 nnnn ppppppP  2121 111  (5.92)

Example5.23 Please decompose the following dynamic equations according to
controllability.

uxx














































0
2
1
2

1004
3304
4424
1102

,  xy 2111 

Solution:
Controllable judgment matrix cS is the following:

  42

0000
2222
8421
2222

1
32 























 nnrankBABAABBrankrankSc

Obviously, the system is not completely controllable. We can select two
linear-independence column vectors from controllable judgment matrix cS :

 Tp 02121  ,  Tp 02222 

And then we need to select two other linear independence column vectors to form
non-singular transform matrix cP of controllable structure decomposition.

























1000
0122
0021
0022

cP

Inverse matrix is
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























1000
0101
00121
0011

1
cP

Hence, system matrix of controllability is the following:























 

1000
2200
5.35.331
3320

1
__

cc APPA ,



















 

0
0
0
1

1
__

BPB c ,  2121
__

 cCPC

Apparently, controllable subsystem is the following:













31
20___

cA , 









0
1___

cB ,  21
__

cC

We easily testify that above subsystem is controllable.
In order to find 1n linear-independence column vectors, we need to do elementary

transformation for controllable judgment matrix cS :

'

0000
0001
0010
0001

0000
0002
7411
0002

0000
2222
8421
2222

cc SS 


































































Obviously, we can easily find that two former column vectors is linearly independent.
At this time we need to select two other linear-independence column vectors to construct a
non-singular linear transform matrix cP of controllable decomposition:





















1000
0101
0010
0001

cP ,






















1000
0101
0010
0001

1
cP























 

1000
2200
4420
1101

1
_

cc APPA ,



















 

0
0
1
2

1
__

BPB c ,  2110
__

 cCPC

Hence controllable subsystem is the following:














20
01___

cA , 









1
2___

cB ,  10
___

cC

Summarizing above example5.23, we can know that selecting linear-independence
column vector is not unique and that corresponding canonical decomposition is also unique.
However, these canonical decomposing systems could be transformed into each other for
they have same eigenvalues; hence these canonical decomposing systems have same
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transfer function.

5.7.2 Canonical decomposition of observability

If system in equation(5.89) is not completely observable,namely nnrankSc  1 ,

non-singular linear transform
_
xPx o makes system in equation(5.89) become the

following form:

u
B
B

x
x

AA

A

x

x

o

oo

o

o

o

o

o

































































_
___

_

_

_

_

__

21

_

_

_ 0
,





















_

_

_
_

0
o
x
x

Cy o
o (5.92)

In equation(5.92), 2n -dimension subsystem is observable, which could be expressed
as follows:

uBxAx oooo

____




(5.93a)

oo xCy
__

1  (5.93b)

Figure5.4 System decomposition in terms of observability
State structure diagram in equation(5.92) is shown in figure5.4. Observing this

diagram in figure5.4, we can easily find such information: the eigenvalues of new system

matrix _
_

oA are eigenvalues which are not observable, but its movement information is
reflected in output information.

The method of ensuring non-singular transform matrix oP is the following:

As we know, the rank of observable judgment matrix oS is less than maximum order，

namely ,
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nn

CA

CA
C

rankrankS

n

o 























2

1



Hence, we can choose 2n linear-independence row vectors 221 nppp  in

observable judgment matrix oS ，and then arbitrarily select  2nn  linear-independence

row vectors nnn ppp 2212  to form non-linear transform matrix oP :
1

2

1


























n

no

p

p

p

P



(5.94)

Example5.24 Please decompose the system in example5.23 in terms of observability.
Solution:
Ensure the rank of observable judgment matrix oS to do observable structure

decomposition.

42

0000
0000
0111
1000

0000
0000
0222
2111

4888
4444
0222
2111

2

3

2





























































































nnrank

rankrank

CA
CA
CA
C

rankrankSo

here, we select two linear-independence unit row vectors to form non-singular
transform matrix oP :













































0001
1110
1000
0100

0010
0001
0111
1000 1

oP

Hence, new system in terms of observable decomposition is the following:























 

2044
1111
0022
0001

1
_

oo APPA ,



















 

1
2
1
0

1
_

BPB o ,  0012
_

 oCPC

We can easily find relatively observable subsystem:
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










22
21_

oA , 









1
0_

oB ,  12
_

oC

5.7.3 Decomposition of controllability and observability

If system in equation(5.89) is not completely controllable and not completely
observable, namely nnrankSc  1 and nnrankSo  2 , a non-singular linear transform

_
xPx  makes system become the following form:

uB
B

x
x
x
x

AA
A

AAAA
AA

x

x

x

x

oc

co

oc

oc

oc

co

oc

oc

oc

co

oc

oc

oc

co































































































0
0

00
00

00

43

242321

13

(5.95a)

 






















oc

oc

oc

co

occo

x
x
x
x

CCy 00 (5.95b)

In equation(5.95), the significance of relative state vectors are as follows:

cox
__

represents 1n -dimension controllable and observable state vector;

_
__

ocx represents 2n -dimension controllable but unobserved state vector; ocx _
__

represents

3n -dimension uncontrollable but observable state vector; __
__

ocx represents 4n -dimension

uncontrollable and unobserved state vector. Furthermore, such expression is always found:
nnnnn  4321 . Hence, for no completely controllable and no completely observable

system, it can be divided into four subsystems: controllable and observable subsystem,
uncontrollable and observable subsystem, controllable and unobserved subsystem,
uncontrollable and unobserved subsystem.

We can obviously find that the transfer function that we acquire is the transfer function
of controllable and observable subsystem, namely:

    coco BAsECBAsECsG
__1____

1


 





  (5.96)

Hence, system transfer function only depicts controllable and observable parts in this
system, however other three parts are not depicted in system transfer function. Then we can
draw such conclusion: state space could completely and thoroughly depicts system
characteristics, but system transfer function can not completely include all information of
system.
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How do we ensure the non-singular transform matrix P in terms of controllable and
observable decomposition? There are a lot of methods of realizing this aim. One of these
methods is introduced here. Original system should be firstly decomposed into controllable
subsystem and uncontrollable subsystem in terms of system controllability, then the two
subsystems are decomposed again according to observability; finally all state vectors are
rearranged to make system state equation become the form of equation(5.95).

The specific course is provided here.
Assume that the dynamic equation of linear time-invariant system is as follows:












Cxy
BuAxx (5.97)

Firstly, we decompose equation(5.97) in terms of system controllability.
In terms of controllable decomposition, we assume that the corresponding transform

matrix cP could be gained as follows:



















c

c
c

c

c

x
xP

x
x

, or 















 

c

c
c

c

c

x
x

P
x
x 1 (5.98)

Equation(5.98) is substituted into equation(5.97), and we can gain

uBP
x
x

A
AABuPxAPP

x

x c
c

c

c

c

c
ccc

c

c














































00
11211 (5.99a)

  

















c

c
ccc x
xCCxCP

y
y

2

1 (5.99b)

Hence, we can acquire the following two subsystems:
Controllable subsystem1:

uBPxAxABuPxAPPx cccccccccc
1

12
11 



 (5.100a)

cccc xCxCPy 1 (5.100b)

Uncontrollable subsystem2:

ccc xAx 


(5.101a)

cc xCy 2 (5.101b)
Then we canonically decompose above two subsystems in terms of system

observability.
Similarly, we can assume the corresponding non-singular transform matrices coP and

ocP , and then get the following transform relations:

cococ xPx
~

 (5.102)

ococc xPx
~

 (5.103)
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By equation(5.103), uncontrollable subsystem could be decomposed in terms of
system observability:
























































oc

oc

oc

oc

oc

oc
occoc

oc

oc

x
x

AA
A

x
xPAP

x

x
~

~

43
~

~
1

~

~
0 (5.104a)

 


























oc

oc
oc

oc

oc
occ

x
xC

x
xPCy ~

~

~

~

2 0 (5.104b)

By equation(5.102), controllable subsystem could be decomposed in terms of system
observability:

u
B
B

x
x

AA
A

x
x

AA
A

uBPPxPAPxPAPBuPPxPAPPP

x

x

oc

co

oc

oc

oc

co

oc

co

cccoococcocococcoccocococcco

oc

co











































































~

~

2423

13
~

~

21

11
~

12
1

~
111

~
11

~

~

00

(5.105b)

 













oc

co
cocococcccc

x
xCxPCxCxCPy ~

~
~

1 0 (5.105b)

Summarizing above results of canonical decomposition, we can gain the following
canonical decomposition of controllability and observability.

uB
B

x
x
x
x

AA
A

AAAA
AA

x

x

x

x

oc

co

oc

oc

oc

co

oc

oc

oc

co

oc

oc

oc

co



































































































0
0

00
000

00

~

~

~

~

43

242321

13

~

~

~

~

(5.106a)

 






















oc

oc

oc

co

occo

x
x
x
x

CCy

~

~

~

~

00 (5.106b)

Example5.25 Please decompose the system in example5.23 in terms of controllability
and observability.

Solution:
In example5.23, we have gotten structure decomposition of system in terms of

controllability which are as follows:
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





















 

1000
2200
5.35.331
3320

1
__

cc APPA ,



















 

0
0
0
1

1
__

BPB c ,  2121
__

 cCPC

Through controllable decomposition, original system is divided into two controllable
and uncontrollable subsystems:

Controllable subsystem:

u
x
x

x
x

x

x












































































0
1

5.35.3
33

31
20

4

__
3

__

2

__
1

__

2

__

1

__

 













2

__
1

__

1 21
x
xy

Uncontrollable subsystem:



















 






















4

__
3

__

4

__

3

__

10
22

x
x

x

x ,  













4

__
3

__

2 21
x
xy

In the following, two new subsystems are decomposed again in terms of system
observability.

For uncontrollable subsystem,

21
10
21

_ 







 rankrankS

oc

Hence, uncontrollable subsystem is not completely observable. We should select
non-singular linear transform matrix ocP to realize observable decomposition.






















4

~
3

~

4

3
_

x
xP

x
x

oc

Transform matrix ocP :






















10
21

10
21 1

ocP

Hence, observable structure decomposition of uncontrollable subsystem is the
following:

























 








 

10
02

10
21

10
22

10
211

occococ PAPA

   01
10
21

21 









oc
PCC coc

Namely,
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




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
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





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












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






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~
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~
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x
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x ,  
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
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



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


4

~
3

~
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x
xy

For controllable subsystem, we should also judge the system observability.

21
42
21





















 rank

AC
CrankrankS

cc

c
co

Hence, controllable subsystem is also completely observable. Similarly, a non-singular
linear transform matrix coP needs to be found to be decomposed according to observability.

We can select such transform matrix coP :






















2

~
1

~

2

1

x
xP

x
x

co , 















 




10
21

10
21 1

coP

Then,







































 
 

10
02

10
21

31
20

10
211

coccoco PAPA ,































 
 

5.35.3
44

5.35.3
33

10
21

13
1

13 APA co ,

   01
10
21

21 







 cocco PCC

Observable structure decomposition of controllable subsystem is the following:

u
x
x

x
x

x

x










































































0
1

5.35.3
44

10
02

4

3

2

~
1

~

2

~

1

~

From the observable transform of uncontrollable subsystem, we can know











































4

~
3

~

4

~
3

~

4

3

10
21

x
x

x
xP

x
x

oc

Above transform relationship is substituted into the observable structure
decomposition of controllable subsystem, and then we can get:
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
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
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
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
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
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
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
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Summarizing above decomposition results, we can get that the canonical
decomposition of system is the following:

u

x
x
x
x

x

x

x

x


































































































0
0
0
1

1000
0200
5.35.310

4402

4

~
3

~
2

~
1

~

4

~

3

~

2

~

1

~

,  























4

~
3

~
2

~
1

~

0101

x
x
x
x

y

Example5.26 Please decompose the following system in terms of controllability and
observability.

uxx








































0
1
1

310
301
100

 xy 210 

Solution:
Judge the controllability of system; and then we can acquire:

  32
210
311
101

2 




















 nrankBAABBrankrankSc

Hence, such system is not completely controllable.
Construct the non-singular transform matrix cP :


















110
011
001

cP

Then we can gain structure decomposition of system in terms of controllability which
are as follows:
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













































































100
221
110

110
011
001

310
301
100

110
011
001 1

1
ccc APPA























































0
0
1

0
1
1

110
011
001 1

1BPc ,    211
110
011
001

210 















cCP

Then we can get two subsystems: controllable subsystem and uncontrollable
subsystem.

Controllable subsystem:

ux
x
x

x

xxc 




















































 




0
1

2
1

21
10

3
2

1

2

1 ，   









2

1
1 11

x
xy

Uncontrollable subsystem:

33 xxxc 


, 32 2xy 

In the following, we will need to judge system observability for uncontrollable
system.

    12  rankCrankrankS coc

Hence, uncontrollable subsystem is completely observable, and there is no structure
decomposition for uncontrollable subsystem.

For controllable subsystem, we can gain its observable judgment matrix coS :

21
11
11





















 c

cc

c
co nrank

AC
CrankrankS

Hence, controllable subsystem is not observable, and we need to select non-singular
transform matrix coP :

















 




10
01

10
11 1

coP

Then observable structure decomposition of controllable subsystem is as follows:







































 
 

21
11

10
01

21
10

10
111

coccoco PAPA





































 


2
1

10
01

2
1

10
11

12
1

coco PAP

, 























 


0
1

0
1

10
111

cco BP

   01
10
01

11 







 cocco PCC
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Namely,
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
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
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
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
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2
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~
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1 01
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Summarizing above results, we can gain the following canonical decomposition of
system:
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x
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x

x
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


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









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
























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



































0
0
1
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221
111
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~
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~
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~

3

~

2

~

1

~

 




















3

~
2

~
1

~

201
x
x
x

y

5.8 Realization of Transfer Function Matrix

Transfer function which demonstrates the information transfer relationship between
system input and system input only shows the dynamic action of controllable and
observable subsystems of system. For transfer function matrix, there are infinite state space
expressions; that’s to say, a transfer function could depict infinite systems with different
inner structure. In infinite systems with different inner structures, the system with minimum
dimensions is the problem of minimum realization.

5.8.1 Basic conception of realization problem

If a state space could be depicted by the following expression












DuCxy
BuAxx (5.107)

The transfer function matrix of equation(5.107) could be gained as follows:

    DBAsECsG  1 (5.108)
State space expression in equation(5.107) is called the realization of transfer function

matrix  sG . We have deduced expression in equation(2.176). Here, we want to point out
that no any a transfer function matrix finds corresponding realization. Transfer function
matrix  sG needs to satisfy the objective condition of realization, namely:

(1) In each transfer function unit of transfer function matrix, polynomial coefficients
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of denominator and numerator are both real constants.
(2) In each transfer function unit, the order number of denominator polynomial is less

than that of numerator polynomial.
When the order number of denominator polynomial is equal to that of numerator

polynomial, we can gain the following expression:
 sGD

s 0
lim


 (5.109)

In terms of equation(5.108), we can gain the realization of state space  CBA ,, :

    DsGBAsEC  1 (5.110)

5.8.2 Realization of controllable canonical form

We assume that transfer function matrix of SISO system is the following

 
01

1
1

01
1

1

asasasa
bsbsbsbsG n

n
n

n

n
n

n
n













 (5.111)

If there is no common factor between denominator polynomials and numerator
polynomials, or if there is no appearance of counteraction between them, expression in
equation(5.111) could be converted into the following form:

  d
asasasas

bsbsbsbsG n
n

n
n

n

n
n

n
n 




 











01
2

2
1

1

01
2

2
1

1


 (5.112)

For SISO system, we can gain the following expression from equation(5.112):

     sdUsU
asasasas

bsbsbsbsY n
n

n
n

n

n
n

n
n 




 











01
2

2
1

1

01
2

2
1

1


 (5.113)

We order the following expressions could be found:

   

   sUbsbsbsb
asasasas

sU
asasasas

bsbsbsbsY

n
n

n
nn

n
n

n
n

n
n

n
n

n

n
n

n
n

01
2

2
1

1
01

2
2

1
1

01
2

2
1

1

01
2

2
1

1
1

1







































(5.114a)

   sdUsY 2 (5.114b)
The corresponding block diagram is shown in figure5.5.

Figure5.5 Equivalent transformation of equation(5.114)
New variable  sZ is introduced to transform transfer function into differential

equation group:
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   

 





























21

2

01
1

11

01
1

1

yyy
duy

bzbzby

uazazaz
n

n

n
n

n





(5.115)

Take a series of state variables,  1
321 ,,,, 



 n
n zxzxzxzx  , and then

we could acquire the following state equation:

  uxaxaxazx

xx

xx

xx

nn
n

n

nn




















12110

1

32

21



 (5.116)

Equation(5.116) could be expressed as matrix form:

ux

aaaa

x

n






















































1
0

0
0

1000
0

100
0010

1210










(5.117a)

  duxbbbduxbxbxby nnn   11012110  (5.117b)

Equation(5.117) is called the realization of controllable canonical form.
Example5.27 Please gain the realization of controllable canonical form on the

following system.

 
1062

64
23

2





sss

sssG

Solution:
In terms of equation(5.117), we can gain the realization of controllable canonical form

is such:

uxx






































1
0
0

2610
100
010

 xy 641

Here, we should note that no all transfer functions are transformed into the realization
of controllable canonical form. Only controllable system could be transformed into the
realization of controllable canonical form. However its form is not only limited to above
form.
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5.8.3 Realization of observable canonical form

Transfer function in equation(5.112) is marked as follows:

     sGsGd
asasasas

bsbsbsbsG n
n

n
n

n

n
n

n
n

21
01

2
2

1
1

01
2

2
1

1 



 













 (5.117)

Here,

   
  01

2
2

1
1

01
2

2
1

11
1 asasasas

bsbsbsb
sU
sYsG n

n
n

n
n

n
n

n
n




 












 ,    

  d
sU
sYsG  2

2

Differential equation of transfer function  sG1 can be depicted as follows:

      ubububyayayay n
n

n
n

n
01

1
11011

1
111 









  (5.118)

Initial condition is       0,0,,0 11
1

1 yyy n


  ;       0,0,,01 uuu n


  .

Laplace transform is exerted onto equation(5.118) and then we can gain
Selecting state variables is as follows:

         

ubxax

ubyaubyaubyayx

ubxaxububyayx

ubxaxubyayx
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n

n
n

n
n

n
n

n
n

n

nnnnnnnn

nnnnnnn

n
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111
3

2
3

12
2

1
2

11
1

11

221211112

1111111

1


























































(5.119)

Obviously, under the condition of given transfer function and input signal  tu , output

signal  sY could be ensured if initial state is given; then dynamic characteristic could be
uniquely ensured. Hence above variables selected could satisfy the condition of state
variables and they could be considered as state variables.

ubxaxx

ubxaxx

ubxaxx

ubxaxx

nnnnn

nnnnn

n

n

111

2221

2223

1112






















Furthermore,
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         

     

     
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ubyaububububub
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n
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n
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01001
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3
2

2
1

1
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2
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1
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2

2
2
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1

1
1

1111
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







 







 












































Hence, we can gain the following state equation:





























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

ubxaxx

ubxaxx

ubxaxx

ubxax

nnnnn

nnnnn
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1

1121

1112

001

 (5.119a)

Or,

u

b

b
b
b

x

a

a
a
a

x

nn































































2

1

0

2

1

0

100

010
001
000

(5.119b)

Output equation is as follows:
  duxyyy  100021  (5.119c)

Above realization is called the realization of observable canonical form.
We could easily find that the coefficient matrices between controllable canonical form

and observable canonical form transpose each other. Namely, the following expressions are
always found:

T
oc AA  , T

oc CB  , T
oc BC  (5.120)

Above characteristic is called dual characteristic.
Example5.28 Please acquire the realization of observable canonical form on the

following system.

 
1062

64
23

2





sss

sssG

Solution:
In terms of the solution of example5.27, we can know these coefficient matrices:




















2610
100
010

cA ,

















1
0
0

cB ,  641cC
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From the relationship shown in equation(5.20), we can acquire the following
observable canonical form:

uxx








































6
4
1

210
601
1000

,  xy 100

5.8.4 Realization of diagonal canonical form

We assume that system transfer function is the following:

   
 sD
sNsG  (5.121)

Denominator expression in above equation could be expressed as follows:
       nsssssssssD  321

If poles of equation(5.121) is  nisi ,2,1 , equation(5.121) could be decomposed

into the following form in terms of partial fraction theory.

 
n

n

ss
C

ss
C

ss
CsG








 

2

2

1

1 (5.122)

Among equation(5.122), coefficient iC can be calculated by the following expression:

     
 i
i

i
ss

i

sD

sNsGssC
i




 lim (5.123)

Hence, output signal  sY could be expressed as the following form:

           









n

i
ii

n

i i
i

n

i i

i sXC
ss
sUCsU

ss
CsUsGsY

111

(5.124)

Here,

   
i

i ss
sUsX


 (5.125)

Then output signal  sY could be transformed into the following form:

   



n

i
ii sXCsY

1
(5.126)

We can gain such expression from equation(5.125):
     sUsXsssX iii  (5.127)

Corresponding differential equation is

niuxsx iii ,,2,1; 


(5.128)

Obviously, when initial state  0ix and input signal  tu are given, the output

signal  ty would be uniquely confirmed. Hence, we can regard the group variable ix as a

group of system state variable. System state equation from equation(5.122) could be
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expressed as the following form:

























uxsx

uxsx

uxsx

nnn


222

111

(5.129a)

Or,

ux

s

s
s

x

n









































1
1
1
1

00

00
00

2

1






(5.129b)

Output equation of system is

   xCCCtxCy n

n

i
ii 21

1




(5.129c)

All expressions in equation(1.29) are called the realization of diagonal canonical form.
We can easily find that system matrix A is a diagonal matrix which factors are roots of
system characteristic equation. Input matrix B is a column vector which all factors are one;
and output matrixC is a row vector which factors are the numerator coefficients in
equation(5.122).

Example5.29 Please acquire the realization of diagonal canonical form on the
following system.

 
8147

53
23

2





sss

sssG

Solution:
     4218147 23  sssssssD

Hence, system transfer function could be transformed into the following fractions:

 
421
321










s
C

s
C

s
CsG

In terms of equation(5.123), the coefficients of fraction could be gained:

   1
42
53lim

2

11 




 ss

ssC
s

,    2
3

41
53lim

2

22 




 ss

ssC
s

,    2
3

21
53lim

2

43 




 ss

ssC
s

The realization of diagonal canonical form is the following:

uxx









































1
1
1

400
020
001

xy 



 

2
3

2
31
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5.8.5 Realization of Jordan canonical form

If system transfer function has several same poles, it would be realized by Jordan
canonical form. In order to explore the case of r multiple roots and that other roots are
single root, we assume that the fraction of transfer function is the following:

 
  

 





n

ri i

i
r

i
i

i

ss
C

ss
CsG

11 1

(5.130)

Fraction coefficient iC could be acquired by residue theorem.

 
 

      sGss
ds
d

ir
C r

iir

ir

ssi
i




 




lim
!

1 (5.131)

   
 

 
 





n

ri i
i

r

i
i

i
i ss

sUC
ss
sUCsY

11

Order

   
 

ri
ss
sUsX ir
i

i ,2,11 


  ； (5.132a)

    nrri
ss
sUsX
i

i ,2,1 


 ； (5.132b)

When ri  ,

   
1ss
sUsX r 



Its differential equation is uxsx rr 


1 ; hence when initial state  0rx is given,

system state  txr could be uniquely confirmed.
For,

   
 

ri
ss
sUsX ir
i

i ,2,11 


  ；

then,

   
 

1,2,11 


  ri
ss
sUsX ir
i

i ；

    1,2,11
1 


  risX

ss
sX i

i
i ；

Corresponding differential equation is the following:

1,2,1;1  



rixxsx iiii 

Order 1 ri ,

rrr xxsx  



111

System state  txr has been gained; hence when  01rx is given, state  txr 1
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could be uniquely confirmed. In terms of similar methods, we can acquire a series of
state      txtxtx rr 132 ,,,  .

Similar to the deduction of diagonal canonical form, we also have the following
expression:

nrriuxsx iii ,2,1; 


When  0ix is given, state  txi will be uniquely confirmed.

Summarizing above discussion, we can know that state  txi could be regarded as

system state variable. Then state equation of equation(5.130) is the following:











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


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
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
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


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1

111

3212

2111

(5.133a)

Or,
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

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
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1
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(5.133b)

Output equation is such

     


 
n

ri
ii

r

i
iir sXCsXCsY

11
1 (5.133c)

 xCCCCCxCxCy nrrri

n

ri
ii

r

i
ir  111

11
1 


   (5.133d)

Example5.30 Please acquire the realization of Jordan canonical form on the following
system.

 
822218

12
234 




ssss
ssG

Solution:
Factorize the denominator of system transfer function  sG .
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      421822218 2234  ssssssssD

Obviously we can easily find that there are two multiple roots in  sD polynomial.

And then partial fraction of system transfer function  sG is the following:

 
  4211

43
2

21













s
C

s
C

s
C

s
CsG

Apply residue theorem o above expression of system transfer function  sG . And then

we can acquire above undetermined coefficients iC .

           
  3
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Hence, state equation of system transfer function is such:
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Output equation is the following:
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2
3

3
10

3
1

5.8.6 Minimum Realization

Transfer function only demonstrates the dynamic action of controllable and observable
subsystem from whole system. For a realizable transfer function matrix, there will be
infinite corresponding state space expressions. In the viewpoint of engineering, how to find
such realization with minimum dimension will be very significant.

1.Minimum realization definition for state space expression
We assume that a realization of system transfer function  sG is the following:

BuAxx 


(5.134a)
Cxy  (5.134b)

If there is no other realization of the following

uBxAx 


(5.135a)
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xCy  (5.135b)

Its dimension of state variable x is less than that of state variable x . Then the
realization of equation(5.134) is called minimum realization of system transfer
function  sG .

System transfer function  sG only demonstrates the dynamic action of controllable
and observable subsystem from whole system, hence some uncontrollable or unobserved
state subsystems are eliminated and these eliminated subsystems don’t affect system
transfer function. That’s to say, such system transfer function with uncontrollable or
unobserved subsystem will make that some control system does not become a minimum
realization. And then how do we perhaps find minimum realization of system?

2.How to find minimum realization from state space expression
A realization of system transfer function  sG is the following:

BuAxx 


(5.136a)
DuCxy  (5.136b)

Then the sufficient and necessary condition of minimum realization is that
equation(5.136) is controllable and observable. In terms of such recognition, we can
ensure the minimum realization of any a system. The transfer function  sG of
equation(5.136) as we have known in chapter2 is the following:

    DBAsECsG  1

If 0D , we can get     BAsECsG 1 .
The common procedure of finding minimum realization is the following:
(1)For a given transfer function  sG , firstly select a realization   CBA ,, of

system; the simplest method is to select controllable canonical form or observable
canonical form.

(2)For above original realization   CBA ,, , decompose original

system   CBA ,, in terms of controllable canonical form.

(3)Then on the basis of the decomposition of controllable canonical form, decompose
system in terms of observable canonical form.

(4)Ensure controllable and observable subsystem, such subsystem is a minimum
realization.

Example5.31 Please find the minimum realization of the following system.

uxx















































0
2
1
2

2000
0120
0030
1001

,  xy 2124 

Solution:

UNDER PEER REVIEW



Chaper5 Controllability and Observability for Linear System

- 281 -

According to given dynamic equations, we can gain:

System matrix A :


























2000
0120
0030
1001

A , input matrix B :





















0
2
1
2

B

Output matrixC :  2124 C
Step1, judge whether given system is controllable.

  nnrankBABAABBrankrankSc 






















 42

0000
16242
27931
2222

1
32

Hence, given system is not completely controllable.
Step2, in terms of controllable decomposition, we need to acquire new system.
We may select two linearly independent column vector such as:

 Tp 02121  ,  Tp 04322 

And then we select two other linearly independent column vector to construct
non-singular transform matrix cP :






















1000
0142
0031
0022

cP

Inverse matrix of transform matrix P is the following
























1000
015.025.1
0025.0125.0
0025.0375.0

1
cP

Then in terms of controllable decomposition, we can get new dynamic equation:
























 

2000
25.1100
125.0021
375.0030

1
ccc APPA ,



















 

0
0
0
1

1BPB cc

 2128 cc CPC

Namely, new system equations are as follows:

uxx















































0
0
0
1

2000
25.1100
125.0021
375.0030

,  xy 2128
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Step3, we continue to decompose the new system in terms of observable characteristic
of system. Controllable subsystem is the following:

u
x
x

x
x

x

x
































































0
1

125.00
375.00

21
30

4

3

2

1

2

1

  









2

1
1 28

x
xy

Uncontrollable subsystem is the following:





































4

3

4

3

20
25.11

x
x

x

x ,   









4

3
2 21

x
xy

Here we decompose the uncontrollable subsystem in terms of observable
characteristic of system if this subsystem is not observable.

2
75.21
21



















 rank

AC
CrankrankS

cc

c
oc

Hence uncontrollable subsystem is observable.
The judgment matrix coS of controllable subsystem is as follows:

2
282
28





















 rank

AC
CrankrankS

cc

c
co

Hence controllable subsystem is also observable.

Controllable and observable subsystem matrix coA :












21
30

coA

Controllable and observable input matrix coB :

 TcoB 01

Controllable and observable output matrix coC :

 28coC
Step4, testify above given matrices to ensure minimum realization of system.

  cococococ nrankBABrankSrank 







 2

10
01

co
coco

co
o nrank

AC
CrankSrank 




















 2

282
28

Hence above controllable and observable subsystem   cococo CBA ,, is minimum

realization which we find according to given transfer function in this example.
As we have known, system transfer function is that of controllable and observable
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system in new system. Hence system transfer function is as follows:

      cococo BAsECBAsECsG
11  

Here, we utilize recurrence method to gain the inverse matrix of

expression   1
 coAsE .

EB 1 ,   211  coco AtrBAtra











01
32

2112 EAEaBAB coco ,   3
30
03

2
1

2
1

22 







 trBAtra co

  






 






































s
s

ss
s

ssasas
BsBAsE co

1
32

32
1

01
32

10
01

32
1

22
21

2
211

       
32

742
0
1

1
32

28
32

1
22

1



















 







ss
s

s
s

ss
BAsECsG cococo

3.How to find minimum realization from system transfer function matrix.
For multi-input and multi-ouput system, if it could be written into the form of

single-input and single-output system, we can assume that the following expression of
multi-input and multi-output system is as follows:

 
01

1
1

01
2

2
1

1

asasas
ssssG n

n
n

n
n

n
n




 









  (5.137)

In equation(5.137), 0121 ,,,,   nn — rm constant coefficient matrix,

denominator polynomial is system characteristic polynomial.Obviously, transfer function in
equation(5.137) is matrix of rational form. When rm  , transfer function in
equation(5.137) will become a single-input and single-output transfer function.

For transfer function in equation(5.137), its controllable canonical form is as follows:



























 rnrrr

rrrr

rrrr

rrrr

c

EaEaEaEa
E

E
E

A

1210

000

000
000








(5.138a)

























r

r

r

r

c

E

B
0

0
0

 (5.138b)

 1210  nncC   (5.138c)

In above controllable canonical form, r0 and rE are rr zero matrix and unit

matrix respectively; sign r is input dimension of transfer function  sG ; sign n is highest
order of characteristic polynomial.
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Similarly, the observable canonical form for equation(5.137) is as follows:































 mnmmm

mmmm

mmmm

mmmm

o

EaE

EaE
EaE
Ea

A

1

2

1

0

00

00
00
000








(5.139a)

























1

2

1

0

n

oB








(5.139b)

 mmmo EC 00 (5.139c)

Here, m0 and mE are mm zero matrix and unit matrix respectively; signm is

output dimension.
After we gain the controllable or observable canonical form, we need to find the

controllable and observable subsystem in relative canonical form. Finally ensure the
minimum realization.

Note that the dimension of minimum realization has to be less than that of given
system.

Example5.32 Please find the minimum realization of the following system.

 


























2
1

1

3
1

1
4

s
s

s
s

ss
s

sG

Solution:
Step1 achieve the controllable canonical form of given transfer function matrix.
Convert the given transfer function matrix into a real fraction, namely

  

























































11
01

2
1

1
1

3
1

1
3

2
1

1

3
1

1
4

ss

ss

s
s

s
s

ss
s

sG

That’s to say,

    































 

11
01

2
1

1
1

3
1

1
3

1

ss

ssDBAsECsG
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 






















 

2
1

1
1

3
1

1
3

1

ss

ssBAsEC , 









11
01

D

Adjust and merge the polynomial of expression   BAsEC 1 in the form of
decreasing power.

 














































































 

36
218

45
315

11
13

6116
1

3465
2318153

6116
1

2
1

1
1

3
1

1
3

2
23

22

22

23
1

ss
sss

ssss
ssss

sss
ss

ssBAsEC

Comparing with equation(5.137), we can acquire the following parameter matrices:
6,11,6 210  aaa












36
218

0 , 










45
315

1 , 










11
13

2 , 2 rm

Above coefficients and coefficient matrices are substituted into equation(5.138) and
then we can achieve controllable canonical form.
























































6011060
0601106
100000
010000
001000
000100

00
00

222221220

222222

222222

EaEaEa
E

E
Ac 










11
01

D



















































10
01
00
00
00
00

0
0

22

22

22

E
Bc ,   











114536
13315218

210 cC

Step2 judge whether above controllable canonical form is observable.


















































41165126
9327151818
218566
33915618
114536
13315218

2
cc

cc

c

co

AC
AC
C

S

For 63 corankS , this controllable canonical form is not completely observable,
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namely, the controllable canonical form is not a minimum realization.
Step3 observably decompose the controllable canonical form   ccc CBA ,, .

Observable transform matrix oP is selected as follows:


































































0105.135.0
5061667.005.0
0103333.010
100000
010000
001000

000100
000010
000001
33915618
114536
13315218 1

oP

Hence, observable canonical form is as follows:











































 

oc

co
oco AA

APAPA
21

1 0

5061667.005.0
0103333.010
100000
000403
0001667.025.0
000100








































 

0

00
00
00
33
11
13

1 co
co

BBPB ,  0
000010
000001

cooc CPCC 









Then we can gain the controllable and observable subsystem   cococo CBA ,, :




















403
1667.025.0
100

coA ,


















33
11
13

coB , 









010
001

coC

Step4 confirm the minimum realization of system.

   3
2739333
0005.40003.10001.20001.111
933313

2






















 rankBABABSrank cocococococ

 
3

5002.045001.1
403
1667.025.0
100
010
001

2
















































 rank
AC
AC

C
rankSrank

coco

coco

co

o
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Hence, minimum realization of given system is subsystem   cococo CBA ,, .

Minimum realization of system is such:




















403
1667.025.0
100

coA ,


















33
11
13

coB , 









010
001

coC , 









11
01

D

Example5.33 Please find the observable canonical form of example5.32.
Solution:
In terms of results in example5.32, we can gain the following parameter matrices.

6,11,6 210  aaa












36
218

0 , 










45
315

1 , 










11
13

2 , 2 rm

Comparing with equation(5.139), we can acquire the observable canonical form:

66

2222222

2212222

2202222

601000
060100
1100010
0110001
600000
060000

0
0
00


































































EaE
EaE
Ea

Ao



















































11
13
45
315
36
218

2

1

0





oB   









100000
010000

00 mmmo EC

Of course, we can also utilize dual characteristic in equation(5.120) to gain above
observable canonical form.

5.9 Pole Zero Cancellation and System Properties

As we have known, controllable and observable system and minimum realization have
same significance. At this time, we perhaps ask whether we could judge the controllability
and observability of given system by system transfer function. For SISO system, the
sufficient and necessary condition of system controllability and observability is that there is
no pole zero cancellation between numerator and denominator of system transfer function.
For MIMO system, pole zero cancellation appears in system transfer function, but it is
possible that system transfer function is controllable and observable. In this section, we will
discuss the theme of pole zero cancellation and system properties.
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For a SISO system   CBA ,, , state space expression is the following:












Cxy
BuAxx (5.140)

The sufficient and necessary condition that system in equation(5.140) is controllable
and observable is that there is no pole zero cancellation between numerator and
denominator in transfer function  sG .

    BAsECsG 1 (5.141)
Demonstration:
Sufficient demonstration.
If system   CBA ,, is not a minimum realization of transfer function  sG , there

will be another system   CBA ,, which has less dimension.












xCy

uBxAx (5.142)

Furthermore the following expression is always found:

      BAsECBAsECsG
11   (5.143)

For the order of new system matrix A is less than that of original system matrix A ,

the order of polynomial  AsE det must be less than that of polynomial  AsE det .
However if equation(5.143) is found, there must be the phenomenon of pole zero
cancellation in equation(5.141). Hence, the hypothesis that system   CBA ,, is not a

minimum realization is not found, that’s to say, system   CBA ,, is a minimum

realization of transfer function  sG .
Necessary demonstration.
If there is no pole zero cancellation in equation(5.141), system   CBA ,, must

be controllable and observable. If pole zero cancellation exists in equation(5.141),

expression   BAsEC 1 will be degenerated into a deflation transfer function. According to
this deflation transfer function which has no pole zero cancellation, we can find a smaller
dimension realization. On the contrary, if there is no pole zero cancellation in

equation(5.141), expression   BAsEC 1 must be a minimum realization, namely

system   CBA ,, must be controllable and observable.

Hence, we can utilize whether pole zero cancellation exists in system transfer function
to judge whether the relative realization is controllable and observable. However, if there is
pole zero cancellation in system transfer function, we will not confirm that system is
controllable or observable.
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5.10 Stabilizability and Detectability

A linear system is said to have stabilzabilityi if all of its unstable modes, if any, are
controllable.

If a system is stable, we say that this system has stabilizability. If a system is
completely controllable, it is stabilizable. In the general case, the subsystem defined by the
modes or states must be stable in order that the system should be stabilizable. For a linear
and constant system, the requirement is that all eigenvalues must be in the stable region,
that’s to say, the left-half of the s -plane for continuous-time system or unit circle of the
z -plane for discrete system. If an uncontrollable system has an positive eigenvalue, this
system will not be stabilizable.The significance of stabilizability is that even though certain
modes can not be controlled by choice of input or feedback, if they are stable(better yet
asymtotically stable), these modes will stay bounded(better yet decay to zero). This modal
behavior can often be tolerated in the overall control system.

A linear system is said to be detectable if all of its unstable modes, if any, are
observable.

If the system is stable, it is detectable. If it is observable, it is also detectable. In
general, the condition is met if the subsystem described by modes are stable. In the linear
constant case, the requirement is that all eigenvalues fall in the stable region of the complex
plane. If the unobservable state is unstable, such system is not detectable. The significance
of the detectability property is that if certain modes are unstable and hence subject to
growth without bound, at least this undesirable behavior will be obvious from the output
signals. No”hidden modes” can be allowed to grow secretly in an unstable fashion.

Chapter summary

This chapter mainly narrates system controllability and observability for linear system.
Furthermore, we also analyze the diagonal canonical form of state space expression and the
dual relationship between controllability and observability. Besides these content, we also
provide the knowledge of controllable and observable standardization for state space
expression, canonical forms and their corresponding realization. Finally, we depict the
stabilizability and detectability of system. In this chapter, readers need to mainly
understand and grasp the relative topic of system cotnrollability and observability such as
construct the judgment matrix of controllability and observability to judge the present state
of system.
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Review Questions

5.1. Please narrate the sufficient and necessary condition of system controllability.
5.2. How is the controllability of system output judged?.
5.3. Please depict how to transform a standard state space into a diagonal canonical form.
5.4. What case is the Jordan matrix suitable for?
5.5. How is the system transfer function transformed into the first controllable canonical
form?
5.6.Please narrate the main idea of canonical decomposition for system controllability.
5.7.Please demonstrate the whole deduction course of diagonal canonical form.
5.8.Please repeat the dual principle of state space expression.
5.9.Please explain the specification decomposition of linear time-constant system.
5.10.How could a minimum realization of given system be found?
5.11.How do we judge a given realization is a minimum realization of a given control
system?
5.12.How do we judge output controllability of a given control system?
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5.13.How do we judge observability of a given control system?

Problems

Problem5.1.Is the following system completely controllable and completely observable?

uxx









































1
0
0

021
030
121

,  xy 124

Problem5.2.Please try to judge the state controllability and output observability of the
following system:

uxx




































01
10
00

210
010
021

xy 










100
001

Problem5.3.Please try to transform the following system into controllable canonical form.

uxx 















 




1
1

43
21

Problem5.4.Please confirm parameters a ,b in the following state space expression.

ux
b

a
x 





















1
1

0
2

,  xy 11 

Problem5.5.Please acquire the minimum realization of following transfer function matrix.

 


























3
1

2

25
2

s
s

s
s

s
s

s
s

sG

Problem5.6.Please acquire the observable canonical form on the following system.

 
632

2
23 



sss

ssG

Problem5.7.Please investigate the controllability and observability of the following system.






















006
1011
016

A ,

















5
6
1

B ,  001C

Problem5.8.Please find the minimum realization of the following system.

uxx





































 




2
0
2
1

4211
0300
1320
1001

，  xy 2132 
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