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Controllability and Observability
for Linear System

Controllability and observability are very important two conceptions of control system
in modern control theory; hence they will be narrated and demonstrated in this chapter.
This chapter will discuss the controllability for linear system and its judgment criterion,
observability for linear system and its judgment criterion. And then structural
decomposition and the minimal realization of transfer function matrix will be also
discussed.

Objectives

By the end of this chapter, you should be able to:

B Know the basic conceptions of controllability and observability.

Judge the controllability and observability of linear time-invariant system.
Decompose the structure of linear system.

Make the controllability and observability of state space expression standardize.

Comprehend the minimal realization of transfer function matrix.

5.1 Introduction of Controllability and Observability

The basic conceptions of controllability and observability are put forward firstly by
Kalman. In multi-variable optimal control system, these two notions are very important.
According to these two conception, we can find the whole condition where optimal control
could be existent. In control engineering, people usually pay attention to two problems: 1)
after a input signal is input into a given system, can system state be converted from original
state to predicted state in a finite time?2) by observing system output for a certain time, is
original state judged? Such is the problem of system controllability and observability. If a
eentrel system is not controllable, optimal control will not be realized successfully. If a
eentrel system is not observable, state observer will not be designed and assigned.

In this section, we will firstly introduce linear correlation and linear independence,

and then give out the definition and condition of system controllability and observability.

5.1.1 Linear correlation and linear independence

If n numbers constitute a sequencing array, such array is called #-dimension vector.
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n -dimension vector can be written into row vector, also into column vector, namely

X
Xy
x=|" (5.1)
xl‘l
Or, written into the following form:
x:[xl, Xy, xn]T (5:2)
Vector x,, x,, ---, x, is thatthe following equation is found
X, e x, +--+c,x, =0 (5.3)
If all coefficients in equation(5.3) are zero, vector x,, X,,. ---, X, is linear
correlation. Otherwise, vectorx,, x,, ---, x, is linear independence.
For example, the following vector
1 0 0
x =01, x,=}L], x; =0
0 0 1

These three vectors are linear independence for all coefficients in equation(5.3) are

zero. If a vectorx; can be expressed by the linear combination of other

vectorsx,, x,, ---, x,  intermsofthe form in equatio(*.3), namely,
x=Yex (5.4)
j=1
J#i
Then veetorsx,, x,, ---, x, are called linear correlation. For the following vector,
1 1 2
x=|2|, x,=|0/, X, =2
3 1 4

Above three vectors are linear correlation for x; =x, +x,.
As we have known, modern control system is found on the basis of state space. State
equation is used to depict the relationship between input signal u(t) and state x(t) ; the

output equation is employed to describe the output change that caused by system state.

Controllability and observability could sufficiently demonstrate the control ability of input
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signalu(r) to system state x(f) and the exhibition ability of system output y(¢) to system

state x(t) . However classical control theory is only used to discuss the control ability of

input signal to output signal. Controllability and observability are very important in modern
control theory. Hence, it’s necessary for us to discuss the controllability and observability

of system.

5.1.2 Definition of controllability

Controllability is used to judge the control ability of input signal u(t) to system
state x(¢) , which is not related to system output y(z) . Hence, we only study the
controllability of input signal to system state.

1) The definition of controllability for linear continuous time-invariant system

Assume that linear continuous time-invariant system is as follows

X=Ax+ Bu (5.5

For any system state x(z,) and another system state x(¢,) , if there is a finite
time (z,, #,) and a sectional continuous input signal u(z), they could successfully make
system state x(to) be transformed into another system state x(tl) in a finite time (to, tl) )
Such system state is controllable, otherwise it is not controllable. If all system states are
controllable, such system state is completely controllable, which is briefly called that such
system is controllable.

l Above definition can be demonstrated in a
Iz phase plane shown in figureS.1. If point P in
phase plane can be converted into any a pointed

}1; state B, P,, ---, P under the input signal,

K point P in phase plane is a controllable state. If

})2 P controllable state could be filled in the whole

— phase plane, that’s to say, for any original state a

o / xl corresponding inputu(t) could be found in a finite
P

time, original system state could be successfully

Figure5.1 Phase plane transformed into any pointed point in phase plane.
Such  system is called state complete
controllability.
Obviously, the controllability of some a state in system is very different from state
complete controllability.

The following points need to be demonstrated.
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B In linear time-constant system, at original time ¢, =0, original state is x(O); any final

state x(tf) can be pointed to be zero state, namely,

x(t ’ ): 0
m  x(0) can be also pointed to be zero state, and x(t f) is any final state. That’s to say, if
there is an unconfined control input signal u(z) in a finite time (#,, ¢,), it could make
system state x(t) be converted into any state x(tf) at the beginning of zero state. Such

case is called state reach-ability. For linear time-constant system, controllability and
reach-ability is interchanged.

B When we discuss controllability of system, control role in theory is unconfined, whieh
2) The definition of controllability for linear continuous time-variant.system

Assume that linear continuous time-variant system is as follows:

x= A+ B(t)u (5.6)

The definition of controllability for linear continuous time-variant system is the same

as that for linear continuous time-invariant system;.but matrices A(t) and B(t) are

time-variant matrices, not constant coefficient matrices:The transform of system state x(¢)

is related to the original time ¢, selected. Hence, the emphasis in linear time-variant system
is that system is controllable at ¢ =¢,.

3) The definition of controllability for linear discrete time-invariant system

Linear discrete time-variant system is as follows:
x(k +1)= Ax(k)+ Bu(k) (5.7)

Function u(k) is winput scalar function, which is constant in (k, k+1) . Its
controllability is-defined as follows:

In finite time ¢ € [O, nT ] , if there is a sequence u(O), e u(n—l) , this sequence
could make system with original state x(0) be successfully converted into any final
state x(n) It’s thoughtful that system state is completely controllable.

Now let’s consider the specific parallel form shown in Figure5.2(a). To control the
pole position of closed-loop system, we are saying implicitly that the control signal, # , can
control the behavior of each state variable in x. If any one of the state variables can not be
controlled by the control u , then we can not place the poles of the system where we desire.
For example, in Figure5.2(b), if x, , were not controlled by the control signal and if x,
also exhibited an unstable response due to a nonzero initial condition, there would be no
way to effect a state-feedback design to stabilize x,; x, would perform in its own way
regardless of the control signal, « . Thus in some systems, a state-feedback design is not

possible.
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Hence, we can know the following conclusions from above examples:

If an input to a system can be found that takes every state variable from a desired
initial state to a desired final state, the system is said to be controllable; otherwise, the
system is uncontrollable.

Le)

Figure5.2 Comparison between a controllable and an uncontrollable systems

5.1.2 Definition of observability

Feedback control form are usually adopted by plenty of control systems.In modern
control theory, feedback information is composed of state variables; but not all state
variables are observable in physics. Hence people started to study whether all state variable
information could be acquired by detecting system output. If every state variable could
affect system output, system state would be observable. If some state in all states does not
affect system output, such system will be not observable. Of course, the information of
some state is not acquired from given system output.

System observability demonstrates the ability of that system output reflects system
state, which is not related to input signal. That’s to say, observability is a property of the
coupling between system state and system output. Thus observability involves the matrices
A and C .Hence, when system observability is analyzed, homogeneous state equation and
output equation are only considered, namely,

x=Ax, x(t,)=x, (5.8a)
y==Cx (5.8b)

A linear system is said to be observable at fo if x(tO) can be determined from the

output function y;, ~, (or output sequence) for ¢, <7, where ¢ is some finite time

ty,

belonging to real. If this is true for all f and x(t(’), the system is said to be completely
observable.
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Clearly the observability of a system will be a major requirement in filtering and state
estimation or reconstruction problems. In many feedback control problems, the controller
must use output variables y rather than the state vector x in forming the feedback signals.

If the system is observable, then system output y contains sufficient information about the
internal states so that most of the power of state feedback can still be realized. A more
complicated controller is needed to achieve these results. This is discussed fully in
Chapterl 1.

The following points need to be demonstrated in terms of above observability
definition.

B What observability expresses is the ability of that system output y(t) reflects system
state x(t) .Since the system output y(t) caused by input signal u(t) could be
calculated, we can order u(¢)=0 and only consider homogeneous state equation and
output equation in equation(5.8).

B  On considering system output equation, we can find that solving state x(t) is very
simple if dimension of system output y(¢) is equal-to that.of system state x(¢), m=n

and further if matrix C is non-singular matrix. Namely, system state could be expressed

into the following form:

x(6)=C7y(1) (5.9)
B So long as the initial state is ensured, instant state of system could be gained in terms

of given input signal u(t) and state equation.

x(t)= ¢(t—t0)x(t0)+£' (é(t—r)Bu(T)dT (5.10)

5.2 Controllability of Linear System

Now we continue to explore the controllability from another viewpoint: that of the
state equation. itself. When the system matrix is diagonal for a linear system, as it is for the
parallel form;.it'is apparent whether or not the system is controllable.For example, the state

equation in Figure5.2(a) is the following:

—a, 0 0 1
x=| 0 -a, O |x+|1lu (5.11)
0 0 -—aq 1
Or,
X1 =-ax, +u (5.12a)
X2 =—a,X, +u (5.12b)

-218 -


vaishu
Highlight

vaishu
Highlight

vaishu
Highlight

vaishu
Highlight

vaishu
Highlight


UNDER PEER REVI EW

Chaper5 Controllability and Observability for Linear System

X3 =—asx; +u (5.12¢)
Since each of equations(5.12) is independent from the rest, the control signalu affects

each of the state variables. This is controllability from another perspective. Now let us look
at the state equations for the system of Figure5.2(b):

-a, O 0 0
x=| 0 —-a; 0 [x+|1|u (5.13)
0 0 -—a 1
Or,
X1 =-a,x, (5.14a)
X2 =—asx, +u (5.14b)
X3 =—agXx;+u (5.14¢)

From the state equation in (5.13) or (5.14), we see that the state variable x;, is not

controlled by the control signalu . Thus, the system is said to be uncontrollable.

In summary, a system with distinct eigenvalues and a diagonal system matrix is
controllable if the input coupling matrix B (system input matrix) does not have any rows
that are zero.

For linear system, let’s explore the judgment criterion of system controllability matrix.

5.2.1 The first criterion of system controllability

Test for the controllability that we have so far explored can not be used for
representations of the system other than the diagonal or parallel form with distinct
eigenvalues. The problem of visualizing the controllability gets more complicated if the
system has multiple poles, even though it is represented in parallel form.Furthermore, one
can not determine controllability by inspection for systems that are represented in parallel
form. In other forms, existence of paths from the input to the state variables is not a
criterion for controllability since the equations are not decoupled.

In order to determine the system controllability, or alternatively, to design for a
feedback for a plant under any representation or choice of state variables, a matrix is
derived that must have a particular property if all state variables are controllable by the
plant input, u . We now state the requirement for controllability, including form, property,
and name of the matrix.

The first criterion of system controllability (Contraollability judgment criterion):
An nth-order plant whose state equation is the following is completely controllable

x=Ax+ Bu (5.15)
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if the rank of matrix S, is n,

rankS, = rank[B AB A’B A"B]: n (5.16)

where matrix S, is called the controllability matrix. Here, number n is system dimension.

Equation(5.16) is the first criterion of system controllability.
Example5.1 Please judge the state controllability of the following system.

-1 2 2 0
x=| 0

-2 0 [x+|0fu

1 3 -3 1

Solution: System matrix A and input matrix B are as follows
-1 2 2 0]
A= 0 =2 0|, B=|0
1 3 -3 1]
0 24 -8]
s.=[B 4B 4B]=|0 <0 0
1 =30 11

rankS, =2 <n=3

Hence, system is not completely controllable.
Example5.2 Please judge the state.controllability of the following system.

0+1 0 0

x=| 00 0 1 |x+|0
-6 11 -6 1
Solution: System matrix'4 and input matrix B are as follows
0 1 0 0
A= 0 0 1 B=|0
-6 11 -6 1
0 O |
s =B 4B 4B|]=|0 1 -6
1 -6 25
rankS, =3=n

Hence, system is completely controllable.
Example5.3 Please judge the state controllability of the following system.
1 3 2 2 1
x=[0 2 0fx+| 1
0 1 3 -1

1 |u
-1

Solution: System matrix 4 and input matrix B are as follows
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N

I
o o =
—_ N W
w o N

oV

I

—_

2 1 3 2 5 4
s.=[B 4 #B]=|1 1 2 2 4 4
-1 -1 -2 -2 -4 -4
Number in the second row is proportional to that in the second row of judgment
matrix S,, rankS, =2 <n=3; hence system is not completely controllable.
In Multi-Input Multi-Output system, judgment matrix S, becomes more complicate;

and ensuring the rank of judgment matrix will become very difficult. The multiplication

S.eS" of judgment matrix S, and its transposition matrix S is a square matrix, and

furthermore the non-singularity of matrix S, @ S” is equal to that of matrix S_; hence when
calculating the matrix which rows are less than its columns, people usually make use of the
relationship rankS, = rank(Sc oS’ ) to confirm the rank of judgment matrix S, .
Example5.4 Please judge the state controllability of the following system.
1 21 1 0
x=[0 1 0fx+{0 1l
1 0 3 0 0

Solution: System matrix A and input matrix B are as follows

1201 10

A=[0 1 0 B=|0 1

10 3 0 0
12 171 0] 1 2 12 171 2 11 o] [2 4
AB=[0 1 0[0 1]=|0 1|, 4B=|0 1 oo 1 o0 1|=|0 1
10 3]0 0| |10 10 3)1 0 3J0 0] [4 2
10122 4 26 6 17
s.=[B 4B 4B]=|0 1 0 1 0 1 SesT=[6 3 2
0010 42 17 2 21

Obviously, the rank of matrix S, ¢ S” is non-singular; hence judgment matrix S, is
full rank, and system is controllable.
Example5.5 Please judge the state controllability of the following system.

1 0 0 1
x(k+1)=] 0 2 =2 |x(k)+]| 0 [u(k)
11 0 1

Solution: System matrix 4 and input matrix B are as follows
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1 0 O 1
A= 0 2 =2 B=|0
-11 0 1
I 1 1 1 1 1
S =[B 4B A’Bl=rank|0 -2 -2|=rankl0 -2 -2
I -1 -3 0 -2 -4
I 1 1
=rank|0 -2 -2|=3=n
0 0 -2

Hence, system is completely controllable.

5.2.2 The second criterion of system controllability

If system matrix 4 is diagonal matrix, we will have simpler controllability judgment
criterion. Firstly, we should discuss whether the controllability ofa system is kept after it is
transformed into another form by linear transform. This answer is yes. Linear transform
only changes state space of system, but the nature characteristic of system is not changed.
Controllability is one of system nature characteristics.

Theorem The controllability of linear|time-constant(continuous or discrete) system
always keeps unchanged by any non-singular transform.

Demonstration: We assume that the state equation of linear time-constant continuous

system is as follows

S: x=Ax+Bu (5.17)

Equation(5.17) after.a non-singular transformation x = Px is the following:

S: x=Ax+Bu (5.18)
In terms of controllability judgment criterion, the controllability matrix system S could

be expressed as follows:

rankSc:rank[B AB A’B - A”_'B] (5.19)

According to the relationship between system S and systemS: A=PAP"', B=PB,

we get
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rankS, = rank[B AB A’B A"_IB]

M 2 n-1
=rankl PB PAP'PB PA P'PB --- PA P‘IPB}

[ o 2 o (5.20)
=rankl PB PAB PA B --- PA B

2 n-1
=rank{P{B AB A B - 4 B}}

For transform matrix P is an reversible matrix, that’s to say, the rank of matrix P is full
rank, equation(5.20) yields

2 n—1

B A B} =ranks, (5.21)

rank S. = rank[B AB A
Obviously, controllability judgment matrices of system S and system S have the same
rank. Namely, if original system is controllable, new system by linear transform is also
controllable. Hence, Through any non-singular linear transform, controllability of system
always keeps unchanged.
The second criterion of system controllability for different eigenvalues: Assuming
the state equation of a linear time-constant system is the following:

A0 0

- 10 4, 01]- -

x=|. . . |x+Bu (5.22)
0 0 A

n

The sufficient and necessary condition of complete controllability of system state is

that input matrix B does not include the row which all elements are zero in diagonal
canonical form gained after non-singular transform.

When we make use of this criterion to judge the diagonal standard of system, we
should note the condition that there are different eigenvalues in system matrix. For example,
please judge the following controllability of four given systems.

-4 0 o] |1
(1) x={ 0 -3 0 |x+]|2 |u, this system is completely controllable.
10 0 -1} |5]
(-4 0 0] [1]
(2) x={ 0 =3 0 |x+]|0 [u, this system is not completely controllable.
0 0 -1 5
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-4 0 o] [0 1]
(3) x={ 0 =3 0 |x+|2 O u, this system is completely controllable.
10 0 1] 7 4]
-4 0 0] [0 0
4) x= 0 -3 0 |x+|2 Olu,thissystem is not completely controllable.
0 0 -1 7 4

Some matrix with multiple eigenvalues can be also transformed into diagonal
canonical form. For such system, above judgment criterion can not be utilized here. Then

we have to use the first judgment criterion of system state controllability. For.example,

2

System matrix 4 has multiple eigenvalues; hence input matrix B has not the rows

there is the following system:

which elements are zero, but it’s easy to judge that this system is not completely
controllable by the first method of controllability judgment criterion.

For the case that system matrix 4 has multiple«eigenvalues, there is the following
theorem.

The second method of controllability judgment criterion for multiple eigenvalues

If a linear time-constant system x = Ax+ Bu has multiple eigenvalues each of which has its
corresponding characteristic vectot, the sufficient and necessary condition of complete
that all of the

matrix B corresponding to the last.row of each Jordan small block J, in system matrix 4

controllability of system state is elements row in input
are not all zero in the following Jordan canonical form by the non-singular transform.
J, e e 0

x+ Bu (5.23)
0 v - J,

The following systems are exampled to illustrate above theorem.

ol [-3 1] x] [o] . _
| |= +| _ |u, this system is completely controllable.
s 0 -3|x 3

After observing this state equation, we can know that there is only a Jordan block. The

element of the last row in input matrix B is 3 which is not zero; hence this system is
completely controllable.

ol [-3 1 x] [3] .. _
2) [V |= +| _|u, this system is not completely controllable.
s 0 -3|x 0
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Here is only a Jordan block in system matrix 4 ,too. The element of the last row in

input matrix B is 0; hence this system is not completely controllable.

X -3 1 0 0 |x 00
wl 10 =3 0 0|x]| |0 2 _
3 | |= + u , this system is completely controllable.
X3 0 0 -4 1 |x 00
;64 0 0 0 -4|x 30

Here is two Jordan blocks in system matrix 4 . All elements of the last row in input

matrix B corresponding to the Jordan block in system matrix 4 are not all zeros which are

respectively[0 2] and [3 0]; hence this system is completely controllable.

al -3 1 0 o7x] [0 2
Hl 10 =3 0 0fx| |00 _ _
4) .= + u , this system is not completely
X3 0 0 -4 1 |x 0 0
_;4_ 0 0 0 —4|x 3 2
controllable.

Obviously, there are two Jordan blocks in system matrix 4 , too. The last row of the

first Jordan block in input matrix B is [0 0] where all elements are zero. Hence, this

system is not completely controllable.

5.2.3 OQutput controllability and its judgment criterion

System controllability has been narrated in section5.22, then readers possibly ask whether system
output can be controlled in state space. The correct answer is that system output could be controlled. We

assume the generally linear time-invariant system is as follows:

x = Ax+ Bu (5.24a)
y=Cx+ Du (5.24b)

Here, x€ R"; yeRl; ueR".

Definition of output controllablity For any an original output y(to) and another output y(t1 ) , if
there exist a finite time [to, tl] and a segment input function u(t) , they could make original output
y(to) be successfully transformed into predicted output y(tl) ; we think that such system is output

controllable; otherwise such system output is not controllable.
Judgment criterion of output controllability The sufficient and necessary condition of output

controllability is the following:

rankS,, = rank|CB CAB CA*B -~ CA'B D|=1 (5.25)
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Example5.6 Please judge the output controllability of the following system.

)}{_24 _13}X+B}u, y=[t ol

Solution: Relative matrix of this system are as follows

A{_; _13}, B=m, c=[1 0], D=0

The output judgment matrix S, is the following:
rankS , = rank[CB  CAB|=rank[l 2]=1=1

Hence, this system output is controllable. However, we easily know that system state
is not controllable.
Note that there is no common relationship between state controllability .and output

controllability.

5.2.4 Controllability of linear time-variant'system

A continuous-time system with the representations {A(t), B(t), C (t), D(t)} is

considered in this section. The state equation of time-variant system is the following:

x(e) = A (e )+ B () (5.26)

For a given input functionu(¢), the solution for the state at a fixed time?, is
x(t) = gl )+ J 8l DBl (5.27)

Here, 4(t,, t,)is the state transition matrix.

Controllability judgment criterion
The sufficient and. necessary condition of state complete controllability for linear

time-variant system on the time interval lto, t fJ is that Gram matrix is non-singular

which expression is the following.

D=1 0. BEB W (o, ohar (5.28)

Demonstration: Sufﬁc1ency of equation(5.28)

If Gram matrix G(to, t f) were to be non-singular, reversible matrix G"l(to, t f)

would be existent. Select the following input function u(r).

u(t)=-B"(t)p" (t,, )G '(t,, )x(t,) (5.29)
Now we need to analyze whether input function u(r) makes original state x(z,) of

system be converted into original point on the time interval [to, th . If the key is yes, it

demonstrates that there exist an input function u(t) expressed in equation(5.29) and that
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system is completely controllable.
As we know, the solution of equation(S 26) is equation(5.27), namely:

x(t)=¢ D+ J o 7)B(E(c)
Order ¢ =, and substitute equation(5.29) into above solution, we can get
xle, )=l o )+ [ ole, ff)B(T)u(T)dT
(et le)-[" 06 ¢ BEB @ (0 )G (0 1, 1lay)a
(0, 1, 2e(e,)- oz, I¢ o 7)B()B ()4 (¢, r)drOG_l(to, t, Wz,
o\
o\

¢ (t)
¢ (t)-
:¢(an tf)x(to) (o’ f)G(o’ /)G (0’ f)x
¢(t0, f)x(to) (o’ f)x
0

Hence, so long as Gram matrix G(to, t f) is non-singular, time-varying system is completely

controllable. The sufficiency of equation(5.28) is demonstrated.
Now let’s demonstrate the necessity of equation(5.28). That’s to say, if system is completely

controllable, Gram matrix G(to, tf) will be non-singular. Here, we utilize proof by contradiction to
prove the necessity of equation(5.28). If Gram matrix G(to, t f) is singular, there will have non-zero

state vector x(to) which could satisfy the following equation:

xT(to)G(to’ tf)x(to):
Namely, L:/ T( )¢(0, Z')B( )BT(T)¢T(t0, T)x(to)dT:0
[ e s [5G el s =0

[[B7 W 0 ) de =0

But matrix B” (7 )" (t,, 7)is continuous for variable, hence from above expression, we

have the following expression:
B'(c)p" (1, 7)xle,)=0
Above state vector x(to) is controllable for we have assumed that given system is controllable.

In terms of the definition of controllability and equation(5.27), if some non-zero state vector x(to)

is controllable, the following expression is found:

xe, )=l 1, (e,)+ [ ;” e, TB(eu(r)dr=0
Namely. x(t,)=—¢"(t0. ¢, ) 9l BEWEMT =] 9t Bule)dr
I = o )= [ 90, 0)8leN0)at | )
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Above expression shows that state vector x(to) is not arbitrary if it is controllable. This state vector
is only such expression: x( ) 0 . This conclusion is contradictory to given hypothesis.Hence the

hypothesis that Gram matrix G(to, tf) is singular is not found. The necessity of equation(5.28) has

been demonstrated.

Example5.7 Please judge the output controllability of the following system.

;{g (t)}“mu, y=[l ol

Solution: System input matrix is the following:
0
B=
1

For the system matrix A(t) satisfies the following relationship:

A(a)A(a):A(a)A(rJ{O 0]

020

(1) Ensure the state transition matrix

The state transition matrix #(0, ¢) could be written into a closed form:

2 1
$(0, ¢ E+_[ dr+;.[LOA(r)dr} o= ] 5!

0 1
(2) Calculate the controllability judgment matrix G(O, t f)
J-t/ #(0, 7)B(z)B" ()" (0, 7)d7
1 1 1
)1 _ltz 0 1 0 t _t4 __tz _t; __t;
=’ 5 o gLl jja=["]*4 2 =20 6
t 1 ——1 1 t0 1 2 1 5
0 1 2 ——t 1 -1 t;
2 6
(3) Judge the singularity of controllability judgment matrix G(O, t f)
L 5 l £
S S 1 1 1
detG(0, ¢,)=det| 20 6" |-~ S ——ty =—1}
6 S S

1 : .
For ¢, >0, det G(O, tf):—tﬁ >0 . Hence system is controllable on the time
45

interval [0, i J

According to above example, we can easily know that the state transition matrix of
system has to be calculate firstly when the controllability of time-varying system is judged
in terms of equation(5.28). But if the state transition matrix of time-varying system is not
written into a closed form, above method will not be employed. In the following
paragraphs, we will introduce a practical judgment criterion of system controllability. This

criterion only utilizes system matrix A(t) and input matrix B(t) to judge system
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controllability.
Assume the state equation is the following:

x(6)= A )x(e)+ B(e () (5.30)
Matrices 4(t) and B(f) could be respectively derived for (n—2) order and (n—1)

order, which could be marked as

B,(t)=B(1)
B(t)=—A()B_(t)+ Bis(c) i=23,-n
Order  Q,(1)=[B,(). B,(t). - B,(1)]
If a time?, makes
rankQ_(t)=rank[B,(t), B,(t), ---, B,(t)]=n (5.31)

this system is completely controllable on the time interval [0, i J
Note that this judgment criterion is only a sufficient condition. If a system could not

satisfy above condition, we would not acquire the conclusion that system is not

controllable.
Example5.8 Please judge the output controllability of example5.7 by above judgment

criterion.
Solution:

detQ (¢)= de‘{(l) _Ot} =t

Obviously, if t#0, rankQ.=2=n ; hence system is controllable on the time

interval [0, t] )

5.3 Observability of Linear System

If a system is described by the following dynamic equations

x = Ax+ Bu (5.32a)
y=Cx+Du (5.32b)

then
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x(t)= e”“x(O)+JZ e Bu(r Yz (5.33a)
y(t)= Ce™x(0)+ CJ-;eA(H)Bu(T)dT + Du (5.33b)

Since matrices 4, B,Cand D are known and input signal u(t) is also known, the
last two terms on the right-hand side of this last equation(5.33b) are known quantities.
Therefore, they may be subtracted from the observed value of output y(t) . Hence, for

investigating a sufficient and necessary condition for complete observability, it suffices to

consider the system described by the following equations.

x=Ax (5.34a)
y=Cx (5.34b)

5.3.1 Observability judgment criterion of time-invariant system

Now let’s consider the system described by equations(5.34a) and (5.34b). The output
vector y(t) is

y =Ce™x(0) (5.35)
Referring to equation(3.35), we have
n—l .k n—1
e =14 At + 4+ L G g t—Ak:Za (t)4* (5.36)
2! 3! k! ! k
. . . k=0 - k=0

tk

k!
Hence, we obtain

Here, a, (t)=

n—1

y=> Ca,(t)4"x(0)

k=0

or
y=a,(t)Cx(0)+ o, (£)CAx(0)+---+a,_, (t)CA""x(0) (5.37)
If 'the system is complete controllability, then, given the output y(t) over a time
interval 0 <¢<1¢,, x(O) is uniquely determined from equation(5.37). It was shown that this
requires the rank of the judgment matrix to be ».
The first judgment criterion of complete state observability The sufficient and

necessary condition of complete state observability of linear time-invariant system is that

the rank of judgment matrix S, is full rank or that determinant of judgment matrix S, is

non-singular, namely,
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C

CA
rankS, =rank| . |=n (5.38)

C A n-1
Here judgment matrix S, is called observability judgment matrix.

Example5.9 Please analyze the state controllability and state observability of the
MRV EA N
X
y= 0{ 1}
Xy

0 1
rankS, = rank|B  AB]= L J

following system.

Solution:

2

Hence, system is completely state controllable.
For output controllability, let us find the rank of the matrix [CB CAB ]

rankS,, = rank|[CB  CAB]=rank[0 1]=1

Hence, system is completely output controllable.

C
For state observability, examine the rank of [C T A'C T] or {CA} .

11
rankS, = rank[CT A" CT]: ranl{o 1} =2

Hence, system is completely state observable.

Example5.10 Please analyze the state observability of the following system.
1 0 -1 2

0 0 1
Wke)=0 —2 1 b(0)+| -1 e, y(k):[l O O}C(k)
30 2 1
Solution:
0 0 1]
1 0 0
C
3.0 2
rankS, =rank| CA |=rank =2<3=n
5 1 0 -1
CA
9 0 1
-2 0 3]

Hence, system is not observable.
Conditions for complete observability in the s plane. The conditions for complete
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observability can also be stated in terms of transfer function or transfer matrices. The
necessary and sufficient conditions for complete observability is that no cancellation occurs
in the transfer function or transfer matrix. If cancellation occurs, the canceled mode can not
be observed in the output.
Example5.11 Please analyze the state observability of the following system.
).61 0 1 0 | x 0

x=lxal=| 0 0 1 |x|+l0k, y=[4 5 1}

wl -6 -11 —6| x| |1
Note that the input signalu(z) does not affect the complete observability of the

system.To examine the complete state observability, we can simply setu(t) = 0. For this

system, we have

4 -6 6
s,=lcr arer (wferlels —7 5
A 1!
4 -6 6
detS =det|5 -7..5 [|=0
1=t -1

Hence, the rank of judgment matrix S, is less than 3. Therefore, system is not
completely state observable.
In fact, in this system, cancellation occurs in the transfer function of the system.The

transfer function between X, (s)-and U(s) is

X,(s) _ 1

U(s) (s+1)s+ 2)(s +3)
And the transfer function between Y(s) and U(s) is
)3((:)) (s +1)5+4)
Therefore, the transfer function between Y(s) and U(s) is

Y(s) _ (s+1)(s+4)

U(s) (s + 1)(5 + 2)(s + 3)

Clearly, the two factors(s+1) cancel each other. This means that there are nonzero

initial states, which can not be determined from the output measurement of y(t).

The transfer function has no cancellation if and only if the system is completely state
controllable and completely observable. This means that the canceled transfer function does

not carry along all the information characterizing the dynamic system.
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5.3.2 The second criterion of complete state observability

If dynamic system is transformed into a diagonal canonical form, there will be a
simpler judgment criterion of state observability. Now let us continue to discuss the
complete state observability for diagonal canonical form.

Theorem The observability of linear time-constant(continuous or discrete) system
always keeps unchanged by any non-singular transform.

Demonstration: We assume that the state equation of linear time-constant continuous

system is as follows

.

S: x=Ax+Bu (5.39)

Equation(5.17) after a non-singular transformation x = Px is the following:

S: x=Ax+Bu (5.40)
In terms of observability judgment criterion, the observability matrix system S, could

be expressed as follows:

C

CA
rankS,, = rank ) (5.41)

CAn—l

According to the relationship x=Px between system S and system S

A=PAP"', B=PB, C=CP™", we get

cp cr | ¢
~ p-lp 4 p-l ~ 4 p-l A _
rankS,, = rank &y f.)A P =rank ¢ A.P = rank C.A =rank S, (5.42)
B ._ n-1 o n'—] o n—1
CP'PA P c4 P C4

Hence, any non-singular transform can not change the observability of a system for

the eigenvalues of original system matrix 4 and new system matrix 4 are same.
Complete state observability for diagonal canonical form with distinct

eigenvalues If linear time-constant system which dynamic equations is x = Ax+ Bu ,

y=Cx has distinct eigenvalues, the sufficient and necessary condition of complete state

controllability is that elements in column of output matrix C are not all zero by

non-singular transform.
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A e o 0
- 0 2, 0]- - _
x=|. . x+Bu, y=Cx (5.43)
0 o - A

n

For example, the observability of the following system is easily known. Here note that

there are distinct eigenvalues.

(1) x=

@) x=

-6
0
0

-6
0

0

0
-5
0
0
-5
0

0]

0
-2

0]

0
-2

X, y= [2 3 S]x; system state is completely observable:

X, y= [2 0 5]x ; system state is not completely observable.

In reality, eigenvalues of system are perhaps multiple. If every multiple eigenvalue is
only corresponding to a characteristic vector, system could be transformed into a Jordan

canonical form, namely

J, 0
ooy, 0 < )
= D 4B y=Cx (5.44)
0 J

Complete state observability. for. diagonal canonical form with multiple
eigenvalues If a system could:.be transformed into a Jordan canonical form shown in
equation(5.44), the sufficient and necessary condition of complete state observability is that

those columns in output matrix C~ which is corresponding to the first row of each Jordan

block are not zero columns:
For example, let’s judge the observability of the following systems.

- [-2 -1
(1) x= 0 Z}C , V= [2 O]x ; system state is completely observable.
- [=2 -1 .
(2) x= 0 5 X, y= [O Z]x ; system state is not completely observable.
-2 1 0 Lo o
3) x={ 0 -2 Ofx, y= {0 ; 2}c; system state is completely observable.
0 0 3

5.3.3 Observability of linear time-variant system

In time-variant system, system matrix A(¢), input matrix B(t) and output matrix C(¢)
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are both the function of time. The corresponding judgment criterion is different from that of
time-constant system.Hence, it’s necessary to explore the judgment -criterion of
time-invariant system. We should utilize the Gram matrix and non-singular transform to

give out judgment criterion.
Before analyzing the observability of linear time-variant system, we firstly explore the

following points:
(1) Time interval [to, th is an observing time of recognizing original state of system

x(t,) ; for time-variant system, this time interval is relative to the selection of original
timef, .
(2) If a system is not observed, the following relationship should be found:
Cle)ple, 1,)x(t,)=0, tely, ] (5.45)
(3) Non-linear transform of system does not change original observability of system.

Demonstration: If original state x(to) of system is not observable, the following
relationship has to be satisfied:
Ce)ple. 10)x(e,)=0
Assuming that transform matrix is sign P, we obtain:
x=Px, C=CcpP, C(t)=Cl)P”

After above expressions are substituted into equation(5.45), we can get
C(e)P'glz, 1,)Px(z,)=0
Cle)gle, 1)x(r,)=0

Hence, original state x(#,) is not observable. That’s to say, non-linear transform does

not change system observability.
(4) If original state x(z,) is not observable, new state ax(f,) is not observable, too;

note that coefficient « is a nonzero real.
Demonstration: If original system state x(to) is not observed, we can get

C(t)¢(t= ly )x(to ) =0
Then,

Cle)gle, 1o )orclty)=0
Hence, new state ax(,) is not observed, too.

(5) If original states x,(z,) and x,(z,) are not observable, new state x,(z,)+x,(z,)

would be not observable, too.
Demonstration:If original states x, (¢, ) and x,(¢,) are not observable, we could gain

C(t)¢(t: to)xl(to)zc(tw(ta to)xz(to)zo

Then,
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Cle)p(t, t,)x,(¢,)+C(O)olr, 2,)x,(t,)=Cle)ple, 2, )x,(z,)+x,(z,)]=0
Hence, new state x, (¢, )+ x,(#,) is not observable,too.
A time-variant system is as follows:
{; — A(e)e+ B0 546
y=C(t)x
Judgment criterion of complete output observability for time-variant system

The sufficient and necessary condition of complete state observability in time-variant

system on time interval [to , t f»J is that the following Gram matrix is non-singular matrix.

j o (1, 1,)CT()C()(e, 1, )dt (5.47)
Demonstration: The solution of equat10n(5 46) is the following:
x(t)=¢ D+ [ ol B (e
Then system output is
¥{t)=Clelx(r) = e, C()f"ple, 0B ue)dz

When ensuring the state observability, we may neglect the role of input signal u(t) .
And then above two equations will be converted into. the following expressions:
x(t)= gle 1 (1)
ye)=C@le, 1))
Expression ¢T(t, t )C T(t) is multiplied into system output equation to yield
$1(t, 1)CHW)=¢"( 1,)C (O)CE)(r, 1))

Integration on time interval lto, t fJ is applied to above equation and then we gain

[0 )l =[" ¢ 1) (CW( 1o hele ) =Gl 1, )ele)

Obviously, when Gram matrix G(to, tf) 1s non-singular matrix, system output y(t)

would uniquely. ensure state x(z, ).

Gram matrix could be used to judge the complete state observability of time-variant
system, but its calculation work is very large. In the following, a simpler method is
introduced to judge the complete state observability of time-variant system.

Assume that system matrix A(f) and output matrix C(¢) for time variablez could be

continuously differentiated respectively for (n—2)h order and (n—1)h order, which is

marked as

Order,
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R(t)=| > (5.48)

C,(0)
On time interval lto, t fJ, if £,>0 and rankR(t)= n , system state is observable.

Example5.12 Please judge the state observability of the following system.

t 1 0
x=|0 ¢ 0+ Bt
00 ¢
y=[1 0 1}
Solution: System matrix A(t) and output matrix C (t) are as follows:
t 1 0
At)=10 ¢ o, C()=[1 o 1]
00 ¢
C()=c(e)=1 o 1]
C,()=C)Al)+Ci)=]r 1 7]

()= C,(0)A()+ C(t) = [t2 F1o2 4]
C,(¢) 10 1
Rit)=|Ce)|=| ¢+ 1 ¢
()| |£+1 2t t*+2t

58]

Obviously, when ¢>0, rankR(t) =3 =n; hence system state is completely observable
on time interval[0, ¢].

Note that this method is only a sufficient condition. If some condition could satisfy
above method, we could not draw such conclusion that system is not observable.

5.4 Diagonal Canonical Form of State Space Expression

As we have known, dynamic equations of system could be transformed into diagonal
canonical form by non-singular transformation. Such mode is very helpful for analyzing
and designing control system. In this section, we will discuss how to transform a system
matrix into a diagonal canonical form. If readers have learned the knowledge of this section,

readers may neglect the content of this section.
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5.4.1 System eigenvalue and characteristic vector

If a nonzero vectorv exists in vector space, which satisfy the following equation,
Av=Av (5.49)
sign A 1is called the eigenvalue of matrix 4 . Any nonzero vector v which could satisfy
equation(5.49) is called characteristic vector which is corresponding to eigenvalue A of
matrix 4 .
According to above definition, we try to acquire the characteristic value of matrix 4.
Equation(5.49) is written into equation(5.50):
(AE- A =0 (5.50)
The sufficient and necessary condition that above non-homogeneous . -equation(5.50)

has nonzero solution is that the determinant of expression (1€ — 4) is zero,namely:

det(AE - A)=|1E -4 =0 (5.51)
Equation(5.51) is called characteristic equation. The following developed polynomial

of determinant det(/iE - A) is called the characteristic polynomial of system matrix A4 .
det(lE—A)= 2"+ a, A +as A2 ++-+a, J+a, (5.52)
Roots of characteristic equation(5.52) is called eigenvalue of matrix 4 . According to
the definition of above characteristic vector, we may know that characteristic vector is
connected to eigenvalue together. If we want to calculate characteristic vector, we should

firstly calculate system eigenvalues./Now let’sanalyze the following examples.

Example5.13 Please calculate the characteristic vector of the following matrix 4 .

0 1 -1
A=|-6 —-11 6
-6 —-11 5
Solution:(l)calculate the characteristic value of matrix 4 .
A -1 1
det(AE—-A)=det| 6 A+11 -6 [=A+61+111+6=0
6 11 A-5

The.solution of above equation is4, =-1, 4,=-2, 4, =-3.
(2)calculate the characteristic vector of eigenvalue 4, =—1.
We assume that characteristic vector is v, =[v,, ©,, ;] , and substitute 4, and

v, into equation(5.50). We could get the following equation:

(LE—-A), =0
-4 0 0 0 1 -1|)o,
Namely, 0 -4 0 |-|-6 —11 6 ||v,|=0

0 0 -4 |-6 -11 5 |)o,
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Uy 0y — Uy

—6v,, —10v,, +60;, | =0

—6v,, —11v,, + 605,
Then we can get the following equation group:

U, +0, —U;; =0

—-6v,, —10v,, +6v,, =0

-6y, —11v,, +60;, =0
Solve above equation group and we acquire

vy =0, v, =y,
v, and v,, may is any nonzero value. Here we take v,, =v,, =1, corresponding
vectoris: v, =[l 0 1] .

Similarly, other two vectors are also calculated which are respectively:

v,=[1l 2 4], ov,=[1 6 9]

5.4.2 System matrix 4 transformed into diagonal matrix

1.Distinct eigenvalues of matrix 4

When matrix 4 has distinct eigenvalues, we can assume P=[v, v, - »,] in

which each characteristic vector v, has its own characteristic vector. Then there is the

following relationship:

A e 0
04 0
A=P'aP=| . . | (5.53)

Namely, when system matrix 4 has distinct eigenvalues, we could transform
matrix 4 into diagonal matrix which each element at diagonal line is respectively the
eigenvalue of system matrix 4 by transform matrix P which is composed of characteristic
vectors.

Here, we should note that the aim of constructing transform matrix P is not to
calculate new system matrix 4 , but to solve the reversible matrix P~ and to calculate new

matrix B and C.
Example5.14 Please convert the following dynamic equations into diagonal canonical
form.

o 1 -1 o
x=[-6 —11 6 |[x+|0lu, y=[1 0 o]
-6 —-11 5 1
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Solution: We have gotten the eigenvalues and vectors of system matrix 4 from

example5.13.

A =-1, A, ==2, A =-3
1 1] 1
v, =01, v, =21, v;=|6
1 4 9

Hence, transform matrix P is the following:

1 1 1
Pz[u1 v, uz]: 0 2 6
1 4 9

3 25 =2 A 0 0 -1 0 0
P'=|-3 -4 3|, A=|0 4, 0|=]0 =2 0
1 1.5 -1 0 0 A4 0. 0" -3
3 25 -2f0] [-2] 11
B=P'B=|-3 -4 3 |0|=| 3|, C=cp=[1 0 oJo 2 6|=[1 1 1]
1 1.5 -1|1 —1] 1 4
Then the diagonal canonical form of dynamic equation is
< [-1 0 0] =2
x=[ 0 =200 ak 3 ju, y=[1 1 1]x
0 0 3] -1
2.Associate matrix of distinct.eigenvalues of matrix 4
-0 1 0 - 0]
0 0 1 - 0
A=} : : : L (5.54)
0 0 o - 1
-4, —a,, —4a,, —4a |

Transform matrix P which make system matrix 4 be converted into diagonal matrix

is a Vandermonde matrix, namely

111 e 1]
ﬂ'l /12 13 e ﬂ’n
P=l2 2 2 .. 2 (5.55)
_//L:z—l //Lg—l /1131—1 //Lz—l_
In equation(5.55), 4,, 4,,---, A, are distinct eigenvalues of matrix 4 .

Example5.15 Please convert the following system matrix into diagonal matrix.
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0 1 0
A= 0 0 1
-6 -11 -6
Solution: (1) calculate the eigenvalues of system matrix A .
A -1 0
det(lE—A)=detf 0 A —1 [=A+62+111+6=0
6 11 A+6

We solve above equation to get corresponding solution: 4, =—-1, 4, =-2, A, =-3.

Hence, transform matrix is the following:

1 1 1]
pP=-1 -2 -3
|14 9]
Diagonal matrix is the following:
1 o i,
A= 0 -2 0
10 0 =3]

3.Matrix 4 has multiple eigenvalues but » independent characteristic vectors
For this case, we take P=[v, v, -+ ©»,] to make system matrix 4 become a
diagonal matrix.
Example5.16 Please convert the following system matrix into diagonal matrix.
1 0 -1
A=]0 1 0
0 0 2
Solution: Characteristic equation is the following:
A-1 0 1
det(AE—-A)=[AE-4|=| 0 A-2 0 |=(A-1)](2-2)=0
0 0 A1-3
Characteristic roots are respectively: 4, =4,=2, A4, =2.
Acquire the characteristic vector of eigenvalue 4, or A,.
(AE - A)Ul =0
Substitute eigenvalue A, into above equation:

00 17,
00 0|v,|=0
0 0 —1]u,

Solution is v;, =0 ; obviously v, and wv,, are not constrained, which are any
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nonzero value. If v, and v,, are independent value, we think that they are the solution

of above equation. Here two independent vectors are taken as follows:

1 0
v, =01, v, =1
0 0

Obviously, these two vectors are independent.

Solve the characteristic vector of eigenvalue A,.
A-1 0 1 o,
(LE-Ap,=0, | 0 A,-1 0 |v,|=0
0 0 A4 -2 vy

1 0 1|v,
Namely, [0 1 0fvy|=0
0 0 0o
After simplifying above equation group, we could get:
V;+0;; =0
{023 =0

Order v, =1, we can get characteristic vector: v,=[v, v,, v,] =[-1 0 1] .

Hence, transfer function is such:

1. 0 -1 1 01
P=[v, v, vjJ=f0 1 0|, P'=[0 1 0
0 0 1 0 0 1
We easily testify the diagonal system matrix A4 :
1 0 0] |4 0 O
A=P'4P=|0 1 0|=|0 A, 0
0 0 2 0 0 A4

5.4.3(System matrix 4 transformed into Jordan matrix

If system matrix 4 is not transformed into diagonal matrix, it has to been transformed
into Jordan matrix which is similar to diagonal matrix.
1. The definition of Jordan block and Jordan matrix

Matrix form is as follows:

(5.56)

S O O N
[ T R
N = O O
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Matrix block as equation(5.56) is called Jordan block. Quasi diagonal matrix which is
composed of a lot of Jordan blocks is called Jordan matrix. In Jordan matrix, every Jordan
block which is located in the diagonal of matrix is called Jordan block. The Jordan matrix
is the following:

4, 1.0 0 0 0 0 O]
04 0 0 0 0 0 O
0 0 4 1 0 0 0 O
0 0 04 1 0 0 0
0 0 0 0 4 O 0 O
0 0 00 0 4 1 0
0 0 00 0 0 A4 O
00 0 0 0 0 0 2]

In above matrix, eigenvalue 4, which has five characteristic vectors constitutes two
Jordan blocks; eigenvalue A, constitute a Jordan block.

For common matrix, even if eigenvalues have been solved, it is very difficult to gain
the corresponding transfer function P except some special cases.

2. General characteristic vector

If system matrix 4 has some multiple characteristic roots, the number of independent
state vectors which is ensured by equation (AE—4)o=0 is less than the dimension of
system matrix 4 . To form a transfer matrix P, we need to confirm some characteristic
vectors which is called general character vector.

(1)Definition of general character vector

When (AE—-A4)0=0 and (AE—A) 'v#0, vectorv is called general characteristic
vector of system matrix 4 .

(2)General character vector group

We assume that sign © is general characteristic vector which is produced by system
matrix 4 which eigenvalue and rank are respectively A and k& . And the following

expression group is always found:

L, =V
U, =(A—2E U=(A—1E)Uk
v, =(4-2E) v=(4-2E, (5.57)

v, =(4-2EY v =(4-2AE)v,
The row vector [z)1 v, - uk] is called the general eigenvector group of

eigenvalue 4 .
(3)Transform matrix P
Transform matrix P which converts system matrix 4 into Jordan matrix is composed

of the general characteristic vector group of each eigenvalue, namely:
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P=[v, v, - v,] (5.58)

Here, give an example to illustrate above theories.
Example5.17 Please convert the following system matrix into Jordan matrix.

1 1 2
A=|0 1 3
0 0 2
Solution: Characteristic equation is the following:
A-1 -1 =2
det(AE—A)=|AE-4=| 0 A-1 -=3|=(A-1)A-1)A-2)=0
0 0 A-2

The solution solved is: A, =4,=1, A4, =2.

2
(4-LE)= 3|, rank(4-ALE)=2
1

o O O
oS O =

Since the rank of expression (4—AE) is 2, there)is only one independent
characteristic vector of eigenvalue A, = 4, =1. General eigenvalue has to be acquired and
constructed according to equation(5.57). In this example, nonzero vectorv needs to satisfy

the following equations.

.29 v, U,, +20;,
(A-ALEp=0 0"3| v, |=| 3v, |[#0
0 1] o, U5
0 0 7o, Tu,,
(A-AEYv=|0 0 6| v, |=|60y|=0
0 0 4| v, 4u,,

After solving expression(4—A4,E) v =0, we can gain v,, = 0. Hence, we can acquire

021
(A-ALEp=| 0 |£0

Then v,, #0, and we should note that v, could get any value. We get the following

values for variables:
vy =1, v;=0, v, =0

According to equation(5.57), we can get the general characteristic vector of
eigenvalue A, =4, =1.
v=[0 1 0], ov,=v=[0 1 of

The second characteristic vector v, is the following:
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01 2|0 1
v,=(A=ALE,={0 0 3|1|=l0
0 0 1]0 0
Hence, the general characteristic vector group is expressed as follows:
1 0
[Ul 02]: 0 1
0 0

Calculate the eigenvectorv, =[v,, v, vy,] ofeigenvalue A, =2.

(A-A,E), =0
Namely,
1 1 2012 0 0|]|lvs, -1 1 2|,
0 1 310 2 O0|fvys|=]0 -1 3Jv,|=0
0 0 2110 0 2|||lvy, 0 0 0] uvs,

Above matrix equation could be written into the following equation group:
—Up; 0y +20,;, =0
{— U,; +305;, =0
Solve this equation group and gain the following expressions:
U3 =305, U3 =505,

Take v, =1 and then get corresponding vector: v, =[v, v, v,] =[5 3 1].

Hence, transform matrix P which can transform system matrix 4 into Jordan matrix
is the following:

1 05
P:[U1 v, 1)3]: 0 1 3
0 0 1
Jordan matrix of system matrix A is the following:
1 10
A=P'4P=0 1 0
0 0 2

This Jordan matrix includes two Jordan blocks.

5.4.4 Pattern matrix

When the eigenvalue of matrix is complex, above method is suitable; but the element
at diagonal will be complex. In order to avoid that the matrix which includes complex
appears, we need to utilize pattern matrix to express such complex case.

If a matrix has m eigenvalues and / complex eigenvalue groups, linear transform
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matrix P could transform system matrix 4 into the following form:

A 0
12
A= A (5.59)
= M )
M2
0 M, |
. o o - \ .
In expression(5.59), M, = } , (i:1,2,3,---,l) ; matrix 4 in-equation(5.59) is
-o, o,

called pattern matrix.
If the number of j -th complex eigenvalues is 7, and if the number of corresponding

characteristic vector is one, complex characteristic value M ;.could be written into the

following form:

T, E 0 0|
0 7, E 0
M,=|0 0 T 0 (5.60)
X o\ ) E
0 0v0 - T,
L 2rx2r

. o, "o, 1 0
In expression(5.60), T, =| ' ‘1, E= :
T -of g 0 1

If matrix 4 has multiple characteristic values, the corresponding parts in matrix 4
can be written into Jordan blocks. Pattern matrix is not diagonal matrix, but its elements is
composed of the components of eigenvalue. Then transform matrix P will become real
matrix. Hence, pattern matrix could avoid the calculation of complex matrix.

Example5.18 Please convert the following system matrix into pattern matrix.

5

Solution: Step1, calculate the characteristic roots of characteristic equation.

A -1

|AE—A|= ‘=f+2/m+2=o
2 A+2

Characteristic roots are: A, =—1+j, 4, =-1-j.

Step2, acquire the characteristic vector v, of eigenvalue 4, .
(A—AIE)UIZF_]' 1 }{Un}:{ U|1+02|_ju'11 }:O
-2 —l=jjvy — 20, =0y — jUy,
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Here, we assume v, =a,+jb, , v, =a,+ jb,; and then there is the following
equation group:
a, + jb,+a, + jb, — ja,+b, =0
{—2511 —j2b,—a,— jb,— ja,+b,=0
Arrange above equation group and then gain
(a, +a, +b)+ j(b,+b,—a,)=0
{(b2 —2aq, —az)—j(2bl +b, +a2)= 0
The condition that complex is zero is that real and imaginary parts are zero; hence we

have:

a,+a,+b =0

b+b,—a, =0
b,-2a,—a,=0
2b+b,+a, =0

Eliminate redundant equations and then gain
b =-a,-a,
b, =2a, +a,

Order a, =1, a,=-1 andthen we can know b =0 and b, =1. Hence,

oL L o ]

Transform matrix P is
1 0
P: a =
AR
Pattern matrix is

- A 1L ofo 1)1 0O (-1 1 c o
A=P AP = = =
1 1]-2 2|-1 1 -1 -1 -0 o
Generally, if the eigenvalues of a 2x2 matrix A4 are A4 =0+jow and

A, =0 —jo , matrix A4 could be transformed into pattern matrix 4 which transform
matrix is P = [al ﬂl] . Here, sign «, and sign f, are respectively real and imaginary of
complex, namely, v, =a, + jf, .

For nxn matrix, if there are n—2 different eigenvalues 4, --- A,, and a pair of

complex eigenvalue o £ jo , such matrix could be transformed and simplified into the

following pattern matrix:
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4, 0 0O O]
0 4, : 0
- 0 0
A=\ . (5.61)
A, 0 0
0 O 0 o o
10 0 0 -o o
Its transform matrix P is
P=lo, v, v, o B (5:62)

In equation(5.62), v, (z‘ =1,2,3,---,n—2) is the corresponding vector of distinct
eigenvalue A, . Sign ¢, and sign B, are respectively real and imaginary -of conjugate

complex characteristic vector.

5.5 Dual relation between controllability and observability

There exists in internal relationship between controllability and observability. Such
internal relation could be confirmed by dual principle. which is firstly put forward by

Kalman. That’s to say, a controllability of system is equal to the observability of its dual

system.

5.5.1 Dual relation of linear system

We assume that there are two systems. One systemz 18

x1 = Ax, +Bu,, v, =Cx,
Another system Z 518

X2 = A,x, + Byu,, ¥, =Cox,
If the following conditions could be satisfied, we think that system Z , and
systemz , are dual.
4,=4', B,=C/, C,=B (5.63)
In equation(5.63), vectors x; and X, is state vectors with » dimension; input control signals
u, and u, are respectively 7 -dimension and m -dimension control vectors; output control signals

»y, and y, arerespectively m -dimension and r -dimension output vectors; matrix 4,, A, —system

matrix; control matrix B, , B, —nxr and nxm control matrix; matrix C;, C,—mxn and

X n output matrix.

Obviously, system z, is a r -input and m -output and n -order system, its dual
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system Z , 1s.a m -input, r -output and n -order system. The block diagram of dual

systems Z , and Z , 1s shown in figure5.3.

Frirx 1) Ixax 1

—

by (WX 1}

Falmi 1)
B:=C1
*u g

wiirx | ] HinX 1)

(Rxr) [mx nl

a) b)

Figure5.3 Simulating structural diagram of dual systems
From the block diagram of figure5.3, we obviously know that inputs and outputs
exchange in dual systems and that the direction of signal delivery is opposite and that
corresponding matrix is transposed and that comparing point and outlet point are
exchanged.
Observing above block diagram from the viewpoint of transfer matrix, we can get the

transfer function G, (s) in figure5.3(a) whichisa mxr matrix.

G(s)=C(sE-4)"B, (5.64)
The transfer function G,(s) in figure5.3(b)isa rxm matrix which is as follows:
G,(s)=C,(sE—4,)" B, =BT (sE-AT)'CT = BT [(sE —4,)" ]7 o (5.65)
Transpose the transfer matrix G, (s) and then gain
G =lrlse-a)Tcr] —cle-ay's, o0

Obviously, the transfer matrices of dual systems transpose each other. Similarly, the
input-state transfer function of a system and state-output transfer function of dual system
transpose each other. However, state-output transfer function of original system and
input-state transfer function of dual system transpose each other, too.

Of course, we need to point out that the characteristic equations of each other dual
systems are also same, namely

|SE — 4| = |sE - 4, (5.67)
for the following expression is always found.

[SE — A|=|sE - 47| = |sE - 4,] (5.68)

5.5.2 Dual principle

If system Zl =(4,, B,, C,) and system Z ,=(4,, B,, C,) are each other
dual systems, the controllability of system Z , 1s equal to the observability of system Z -
and the observability of system ZI is equal to the controllability of system z , . Or,

that’s to say, if the system Z , 1s completely controllable(observable), the dual system Z 5
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will be completely observable (controllable).
Demonstration:

For system Z | » judgment matrix of system controllability is the following:
S.,=|B, 4,B, 4B, - 4B

If rankS,, = n, the state of system Z . 1s completely controllable.

The relationship in equations(5.63) is substituted into above judgment matrix S, and
then we get

S, = [C,T Ach (47 fcr (AIT)”_ZC,TJ: s

This expression demonstrates that the rank of observable judgment matrix S,, of
system Z ,1s n, and then it also shows that system Z . 1s completely observable.

Similarly, S” = [c; At (4 ]: B, 4B - 47B|=s,

Namely, if the rank of observable judgment matrix S, is full rank, system z , 1s
completely observable; then the rank of controllable judgment matrix S, is full rank,

system Z , 1s completely controllable.

5.5.3 Dual principle of time-variant system

For time-variant systems Zl =[4,()., B/(), C/()] and
Zz =[4,(t). B,(t), C,(¢)], if the following relationship is found, system Zl and
system Z , are each other duality:

4,()=-4] (1)
B,(t)=C/(¢) (5.69)
C,()=5/(t)

According to above definition, we may deduce that their state transfer matrices

transpose each other, namely

¢, =4 1) (5.70)
In.equation(5.70), & (¢, ¢,) is the state transfer matrix of system Zl , b (t, t,) isthe
state transfer matrix of system Z 5 -

Demonstration:

For system Z , » we can gain the following state equation:

;62 = Az(t)xz +Bz(t)”2(t)= _Alr(t)xz +C1T(t)”2(t) (5.71)

Its state transfer matrix should satisfy the following differential equation:
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¢2(t> l‘O)Z—AlT(t) z(t, to)
{@(to, t,)=E (5.72)

Transpose equation @,(z,, #,)=E and we acquire

¢2T(t0’ tO):E’ ¢2T(toa t)¢2T(ta to):E

Differentiate above matrix equation and yield

di.r T _
E[@(%a t)¢2(t, to)]—o
Bt W 6)+01 (0, 00 1)=0
Namely,
bt )=t D0 1,8 1) (5.73)

Transpose equation(5.72) and we can know
¢2T(t: to)=_¢2r(ta tO)Al(t)
Above expression is substituted into equation(5.73) and we can gain:
o7
9, (toa t)=¢2T(t0’ t)¢2T(t’ to)Al(t)¢2T(toa t): Al(t)¢2r(to= t)
According to the property of state transition matrix, ¢, (to, t) has to be the state

transition matrix of the following system.
xi =4 (t )xl
Namely, bt 1)=¢ 0, 1)
That’s to say, system Z , and system Z , are each other dual systems which state

transition matrices are each other transposition matrix. Hence we can gain the dual

principle of time-variant system: the observability of system Z , 1s equivalent to the
controllability of system Z , » the controllability of systemz . 1s equivalent to the

observability of system Z 5.

5.6 Controllability and Observability Standardization of

State Space Expression

As we have known, for a same system there may be different state space expressions,
some specific form is called canonical form.It is very helpful for control system design to
standardize the state space expression. For example, diagonal form is conveniently utilized
to judge the controllability and observablity of system, but it is not perhaps suitable for
state feedback design. In this section, controllable canonical form and observable canonical
form will be introduced to help readers design state feedback components or state observer.
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Let’s firstly discuss the linear continuous and discrete time-invariant systems which

are marked as {4, b, c}. The system by linear transform is marked as {A, b, c} .

Non-singular transform will not change the controllability and observability of system.
For linear time-invariant continuous system with one input, the state space expression

of system could be expressed as the following:

{x(t)Ax(t)+bu(t) e
y(e)=cxle)
System transfer function is
n-1 n-2
G(S)= bn_IS +bn_2S +"'+bIS+bO (576)

n n-1
S +an71S +---+a1s+a0

Linear transform is

x(t)=Px(t) or x(¢)=Tx(t) (5.77)

The state equation after linear transform is

x = Ax(t)+bulr) (5.78)

(t)=cx(7)

For discrete system, the state space expression is

{;c(k+1):Ax(k)+bu(k) 579
(k)= ex(k)
Linear transform is

x(k)=Px(k) or x(k)=Tx(k) (5.80)

The state equation after linear transform is
x(k+1)= Ax(k)+bu(k)

(k)= cx(k)

(5.81)

5.6.1 First controllable canonical form

Definition: the state equation with the following form is called first controllable

canonical form.
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0 1 0 0]
A=| : .|, b=l (5.82)
0 0 1 0
__a() —al e eee _ar/—]

The controllable canonical form is limited to the form of matrix 4 and column
vectorb . Sign ¢ can be arbitrary.

Theorem The state equation with first controllable canonical form is controllable. Any
a controllable state equation can be transformed into first controllable canonical form by

non-singular form x = 7x .

T,
T A
T=| T4 |, T=[0 - 0 15", S =[p ab - 4"'b] (5.83)

c

_TiAnfl |

Example5.19 Please transform the following state equation into first controllable

canonical form.
. 1 0 -1
x= X+ u
-1 2 1

Solution: Step1, check the controllability of system.

1 -1
.SC:[ }, rankS, =2
1 3

According to judgment criterion of controllability, system state is controllable, hence
given system could be transformed into first controllable canonical form. System
characteristic equation is
s—1 0

det(sE— 4)= : 5
§—

=5’ —35+2

According to equation(5.82), first controllable canonical form is the following:

P

Step2, acquire transform matrix 7.

RN

Hence, transform matrix 7 is the following:

A [T V2
TAl |0 1
Step3, validate canonical form.

-253 -



UNDER PEER REVI EW

Modern Control Theory

412 -1 - Lo (y2 121 off2 -1 0 1
T = 5 A=TAT " = =
0 1 0 1 1-1 20 1 -2 3
_ /2 1/2 -1 0
b=Tb= /2 =
0 11 1
Example5.20 Please transform the following dynamic equations into first controllable

canonical form.

1 2 0] [2
x=[3 -1 1|x+|1ju, y=[0 0 1]x
0 2 of |1

Solution:
Step1, check system controllability.

2 4 16 175 —-05 -2
S=[16 8| S'=/-0125 025_"0
1 2 12 ~0.125 ~_ 0. %025

DetS.#0 , rankS,=3 ; hence given system 'is' controllable which could be

transformed into controllable canonical form. System characteristic equation is the

following:
s—1 =220
det(sE—4)=| -3 s+l —1=5"-95+2
0 -2 s
The first controllable canonical form is such:
0 1 0 0
A= 0 0 1|, b=|0
-2 9 0 1

Step2, acquire transform matrix 7’
7,=[0 0-1]s!=[-0.125 0 0.25], T[4=[-0.125 025 0]

1 2 0
T4 =[-0.125 025 0]3 -1 1[=[0.625 -0.5 0.25]
0 2 0
Transform matrix 7 is the following:
T, -0.125 0 0.25
T=|T4|=|-0.125 025 O

T A 0.625 —0.5 0.25

Step3, check the validity of controllable canonical form.
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-2 4 2 —0.125 0 025]2] [o
T'=|-1 6 1], b=Th=|-0.125 025 0 |[1|=]|0
3 21 0.625 -0.5 025]1 1

—0.125 0 0251 2 oO-2 4 2] [0 1 o0
A=TAT "' =/-0.125 025 0 |3 -1 1|-1 6 1|(=/0 0 1
0.625 -0.5 0250 2 o 3 2 1 -2 9 0

c=cT'=[3 2 1]

5.6.2 Second controllable canonical form

Definition: State equation with the following form is called the second controllable

canonical form.

0 - 0 =—aq 1

/1 0 : - |0

A= = , b=| (5.84)
oL —a,, :
0O -+ 1 =-a 0

n—1
Theorem: The state equation with the second controllable canonical form is

controllable. Any a controllable state equation can be transformed into the second

controllable canonical form which linear transform is x = P x . Here transform matrix P is
the following:
P=S=|p 4b - a'b] (5.85)
Example5.21 Please transform system in example5.20 into second controllable
canonical form.
Solution:
In terms of the result of example5.20, we can know the judgment matrix of

controllability which is also transform matrix of the second controllable canonical form.

2 4 16 .75 -05 =2
P=S,=[1 6 8|, P'=8'=|-0125 025 0
1 2 12 -0.125 0 0.25
Testify the correctness of transform matrix P .
0 0 -2
A=P'4P={1 0 9 |, b=P'b=
01 0
2 4 16
c=cP=[0 0 1]1 6 8|=1 2 12]
1 2 12
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5.6.3 First observable canonical form

Definition: State space expression with the following form is called the first

observable canonical form.

0 - 0 -q
|1 0 : .
A=, . . , c=[0 - 0 1] (5.85)
Do . —a,,
O 1 _an—l

Note that the observable canonical form is only limited to given form of matrices. A4,
c; matrixh may be arbitrary.

Theorem Dynamic equation with the first observable canonical form is observable.
Any an observable dynamic equation is both transformed into the first observable canonical

form which transform relation is x = Px . Transform matrix P can-be.ensured through the

following expressions.

P=lp, 4p, Ap, - Ap] (5.86a)
¢ 1o 0
cA : nE

n=| ik (5.86b)
A" 1

Example5.22 Please transform the following dynamic equations into first observable

canonical form.

12 70] [2
¥=[3 —1 1lx+| 1 |u, y=[0 0 1
0 2 0] |1

Solution:
Stepl, check given system observability.
c 0 0 1
S =lcAd|=|0 2 0|, detS, #0, rankS, =3
cA’| |6 -2 2
Hence, given system is observable and it can be transformed into first observable

canonical form. System characteristic equation is such:

s—=1 -2 0
det(sE—A4)=|-3 s+1 —1=5"-95+2=0
0 -2 s

In terms of equation(5.85), we can get the first observable canonical form:
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0 0 -2
A=[1 0 9|, c=[0 0 1]
01 0
Step2, gain the transform matrix P .
-1/3 1/6 1/6
S'=1 0 12 0
1 0 0
In terms of equation(5.86), we can gain the transform matrix P .
0 1/6 1/6 7/6
p=S'0[=| 0|, 4p,=|1/2|, A’p,=| 0
1 0 0 1
1/6 1/6 7/6
Pz[pl Ap, A2p1]= 0 12 0
0 0 1

5.6.4 Second observable canonical form

Definition: State space expression with the following form is called the second
observable canonical form.

0 1 0
S I :
A= . Rt c=[1 0 - 0] (5.87)
4y 4 T4,

Theorem Dynamic equation with the second observable canonical form is observable.

Any an observable dynamic equation is both transformed into the second observable

canonical form which transform relation is x = Tx . Transform matrix 7 can be ensured
through the following expressions.
c

cA
T=S = : (5.88)

o

cA™!

5.7 Canonical Decomposition of Linear System

If a system is not completely controllable and observable, this system includes

uncontrollable and unobservable subsystems. As we know, non-singular linear transform
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does not change the controllability and observability of given system, hence system state
equation can be divided into controllable and observable, controllable and unobservable,
uncontrollable and observable, uncontrollable and unobservable subsystems.Then system

structure characteristics can be further discovered.

5.7.1 Canonical decomposition of controllability

Assume that the dynamic equation of linear time-invariant system is as follows:

y=Cx

If equation(5.89) is completely controllable, namely the rank of controllable judgment

matrix S, 1S n, <n, a non-singular transform relation x = P, x makes given system become

AN {Bc}, (5.902)

- 0 A:lxe 0

y:[cc C;} Xe (5.90b)
x:

Among equation(5.90), n, -dimension subsystem is controllable, which could be

the following form:

expressed as follows:

Xe=AcXe+Beu (5.91a)
»=Cexe (5.91b)
A

9]

A [ CD_y—'

Y

= |

4]

] — C:
A;

Figure5.3 System decomposition in terms of controllability

- 258 -



UNDER PEER REVI EW

Chaper5 Controllability and Observability for Linear System

State structure diagram of equation(5.90) is shown in figure5.3. Observing the
diagram in figure5.3, we can know that control signalu does not affect non-controllable

statex  of system.

&

The method of ensuring non-singular linear transform matrix P, is as follows:

The rank of controllable judgment matrix S, is », <n, namely,

rankS, = mnk[B AB - A"_IB]: n <n
We can ensure n, linearly independent column vectors p;, p,, -+ p, and then
we can  arbitrarily  select (n—n,) linearly  independent  column
vectors p, .1, P,.» ' P, Which is not related to vectors p,, p,, -+ p, . Hence,

non-singular linear transform matrix P of controllability structure decomposition is as

follows:
P=lp, ps = Py Pun Pa 0 P (5.92)
Example5.23 Please decompose the following dynamic equations according to
controllability.
-2 0 1 -1 2
X = _j 02 j _:x+;u, y:[l I -1 2]x
4 0 0 1 0
Solution:

Controllable judgment matrix S, is the following:

2 -2 2 =2

1 -2 4 -8
rankSC:mnk[B AB A’B A3B]:mnk =2=n<n=4

2 -2 2 =2

0 0 0 O

Obviously, the system 1is not completely controllable. We can select two
linear-independence column vectors from controllable judgment matrix S, :
=2 1 2 of, p,=[-2 -2 -2 of

And then we need to select two other linear independence column vectors to form

non-singular transform matrix P, of controllable structure decomposition.

2 =200

1 -2 0 0
PC:

2 -2 10

0 0 0 1

Inverse matrix is
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1 -1 0 0
P /2 -1 0 0
‘ -1 0 1 0
0 0 0 1
Hence, system matrix of controllability is the following:
0 -2 -3 3 1
» 1 -3 -35 35 — 0 —
A=P'AP = , B=P'B=| |, C=CP=[1 -2 -1 2]
0 0 2 =2 0
0 0 0 1 0

Apparently, controllable subsystem is the following:

z:[(j jﬂ, Bizm, c.=ll 2]

We easily testify that above subsystem is controllable.

In order to find n, linear-independence column vectors, we need to do elementary

transformation for controllable judgment matrix S, :

2 -2 2 =2 2 0 0 .0 1 0 0 O

1 -2 4 -8 I -1 =4=7 01 0O .
c = - - :Sc

2 -2 2 =2 2 0000 1 0 0 O

0 0 0 O 0O 0.0 O 0 00 O

Obviously, we can easily find that two former column vectors is linearly independent.
At this time we need to select two other linear-independence column vectors to construct a

non-singular linear transform matrix. P, of controllable decomposition:

.00 0 000
041 0 0 L lo 100
L= ; E =
1 010 -1 01 0
000 1 0 0 0 1
-1 0 1 -1 2
N 0 -2 4 -4 — 1] —
A=P'AP = , B=P'B=| |, C=cP.=[0 1 -1 2]
0 0 2 -2 0
0 0 0 1 0

Hence controllable subsystem is the following:

Z{‘Ol _"2}, 57=m, c.= 1)

Summarizing above example5.23, we can know that selecting linear-independence
column vector is not unique and that corresponding canonical decomposition is also unique.
However, these canonical decomposing systems could be transformed into each other for
they have same eigenvalues; hence these canonical decomposing systems have same
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transfer function.

5.7.2 Canonical decomposition of observability

If system in equation(5.89) is not completely observable,namely rankS.=n<n,

non-singular linear transform x=P x makes system in equation(5.89) become the
following form:
A4 _ X
Xo || o T Ry ?o ", yZ{Co 0} ic (5.92)
- A, A | x B X
Xo 0 o
In equation(5.92), n,-dimension subsystem is observable, which could be expressed

as follows:

Xo = Ao Xo+ Botl (5.93a)

¥, =CoXo (5.93b)

Ao =

u — ;o — 34
— A. I - C.
“ Zzl a
u x;

| —
A_; I

Figure5.4 System decomposition in terms of observability

State structure diagram in equation(5.92) is shown in figure5.4. Observing this
diagram in figure5.4, we can easily find such information: the eigenvalues of new system

matrix A, are eigenvalues which are not observable, but its movement information is
reflected in output information.

The method of ensuring non-singular transform matrix P, is the following:
As we know, the rank of observable judgment matrix S, is less than maximum order,

namely ,
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C
CA

rankS, =rank| . =n,<n

CAn—l
Hence, we can choose n, linear-independence row vectors p, p, -+ p, In

observable judgment matrix S, , and then arbitrarily select (n —n2) linear-independence

row vectors p,,., P, ‘- P, toform non-linear transform matrix P :
r -1
P
£,=1 P (5.94)
L P

Example5.24 Please decompose the system in example5.23 in terms of observability.
Solution:
Ensure the rank of observable judgment matrix S, to do observable structure

decomposition.
C 1 1 -1_2 1 1 -1 2
-2 =2 2.0 -2 =2 2 0
rankS, = rank| |=rank =rank
4 4 —4 4 0 0 0
cA’ “8 -8 8 -4 0 0 0 0
0 0 0 1
1 1 -1 0
=rank =2=n,<n=4
0 0 0 O
0 0 0°0

here, we /select.two linear-independence unit row vectors to form non-singular
transform matrix P, :

-1

0 0 0 1 0 0 1 0
1 1 -10 0 0 0 1
P() = =
1 0 0 O 0 -1 1 1
01 0 O 1 0 0O
Hence, new system in terms of observable decomposition is the following:
1 0 0 O 0
- » -2 =2 0 0 . » 1| -
A=P'AP = , B=P'B=| |, C=CP,=[2 1 0 0]
-1 -1 -1 1 2
-4 -4 0 2 1

We can easily find relatively observable subsystem:
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1
-2

2
-2

0

| Co=[2 1]

5.7.3 Decomposition of controllability and observability

If system in equation(5.89) is not completely controllable and not completely

observable, namely rankS,=n, <n and rankS,=n, <n, a non-singular linear transform

x=Px makes system become the following form:

;CO ch O 213 O ;c() ECO
)fc; _ An A f23 Ao )_Cc5 N B " (5.952)
- 0 0 A Xeo 0
=10 0 As dw|xm] | O
;L'O
. - ;c;
y=[c. €s 0 oF (5.95b)
Xco
x5

In equation(5.95), the significance of relative state vectors are as follows:

Xeo represents  n, -dimension controllable and observable state vector;

X, represents n, -dimension controllable but unobserved state vector; x:, represents

n, -dimension uncontrollable but observable state vector; xc, represents n, -dimension

uncontrollable and unobserved state vector. Furthermore, such expression is always found:

n,+n,+n,+n, =n. Hence, for no completely controllable and no completely observable

system, it can be divided into four subsystems: controllable and observable subsystem,
uncontrollable and observable subsystem, controllable and unobserved subsystem,
uncontrollable and unobserved subsystem.

We can obviously find that the transfer function that we acquire is the transfer function

of controllable and observable subsystem, namely:

G(s)=C(sE-4)"'B= C(SE - ij_ Beo (5.96)

Hence, system transfer function only depicts controllable and observable parts in this
system, however other three parts are not depicted in system transfer function. Then we can
draw such conclusion: state space could completely and thoroughly depicts system
characteristics, but system transfer function can not completely include all information of

system.
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How do we ensure the non-singular transform matrix P in terms of controllable and
observable decomposition? There are a lot of methods of realizing this aim. One of these
methods is introduced here. Original system should be firstly decomposed into controllable
subsystem and uncontrollable subsystem in terms of system controllability, then the two
subsystems are decomposed again according to observability; finally all state vectors are
rearranged to make system state equation become the form of equation(5.95).

The specific course is provided here.

Assume that the dynamic equation of linear time-invariant system is as follows:

x=Ax+ Bu (5.97)
y=Cx

Firstly, we decompose equation(5.97) in terms of system controllability.

In terms of controllable decomposition, we assume that the corresponding transform

matrix P, could be gained as follows:

FEERRS om
X Xe Xe X

Equation(5.98) is substituted into equation(5.97), and we‘can gain

Xl =P AP x+P'Bu= A ‘i” 1 +P Be u (5.99a)
- 0 A: || xz 0
Xe
Pﬂﬂ@hEcEFq (5.99b)
V2 Xe

Hence, we can acquire the following two subsystems:

Controllable subsystem1:

Xo=P AP x, + P"'Bu= A.x. + Avxi + P B (5.100a)
yl :CPC-;L:EC;L (S.IOOb)
Uncontrollable subsystem?2:
xe = Aix: (5.101a)
y, = Cex (5.101b)

Then we canonically decompose above two subsystems in terms of system
observability.

Similarly, we can assume the corresponding non-singular transform matrices P, and

P, and then get the following transform relations:
X =P, Xe (5.102)

x: =P, X (5.103)
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By equation(5.103), uncontrollable subsystem could be decomposed in terms of

system observability:

-zCEo :PE;IZCPEO -iCZo — fzu _0 iCZo (51043)
;77 Xeo A43 AZE _xz;
y,=Cp | ¥ | <[, o] X (5.104b)
Xo Xeo |

By equation(5.102), controllable subsystem could be decomposed in terms of system

observability:

Y0 |= B APP, xot PP Bu= P AP, xeot P 4P, xiot PP B

Xz (5.105b)
_ Eco _O _ECCU n 213 _0 %Eo n ?co u
AZI Ac; Xco A23 A24 Xzo Bc;

% =CPxe=Coxe = CeP, Xeo =[Cas o{fw] (5.105b)

Xco

Summarizing above results of canonical decomposition, we can gain the following

canonical decomposition of controllability and observability.

ZCCD Zco O Zl 3 O Xco B co

Xeo An Ao Axn  Au | xo Bes

oo | = 4 Yoo | 4| Peoly (5.106a)
1 lo 0 4w 0| |0
'?CO 0 O 243 Z;; -;CE;
| Xco | o
-;:CU
~ R ] Xco
y=[C. 0 Ca of* (5.106b)
Xco
| Xco |

Example5.25 Please decompose the system in example5.23 in terms of controllability
and observability.

Solution:

In example5.23, we have gotten structure decomposition of system in terms of
controllability which are as follows:
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0o -2 -3 3 1
- 1 -3 -35 35 - 0 _
A=P'AP = , B=P'B=| |, C=CP.=[1 -2 -1 2]
0 0 2 -2 0
0 0 0 1 0

Through controllable decomposition, original system is divided into two controllable
and uncontrollable subsystems:

Controllable subsystem:

Uncontrollable subsystem:
_ P S
SR N S R
}4 X4 X4

In the following, two new subsystems are decomposed again in terms of system
observability.

For uncontrollable subsystem,

c

-1 2
rankS =rank =1<2
co 0 1

Hence, uncontrollable subsystem is not completely observable. We should select

non-singular linear transfori matrix 2 = to realize observable decomposition.

E3 -p ;Cs

X4 co ;4

—1 27" [=1 2
P = =
o 10 1 0 1

Hence, observable structure decomposition of uncontrollable subsystem is the

Transform matrix on :

following:
- = -1 2|2 -2||-1 2 2 0
Ago :P AEP = =
“ “ 10 10 1]0 1 0 1
— -1 2
Co=CP =[-1 2] =[1 o]
¢ 0 1
Namely,
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B k]

For controllable subsystem, we should also judge the system observability.

Cc 1 _2
rankS, =rank| — — |=rank 5 4 =1<2

c

Hence, controllable subsystem is also completely observable. Similarly, a non-singular

linear transform matrix P, needs to be found to be decomposed according to observability.

We can select such transform matrix P, :
— ~ -1
AR Pco:[l _2} :[1 2}
X2 s 0 1 0 1
- 1 =270 -2 1 2] [-2 o
Aco:f)co Acf)co: = R
0 1|1 =-3]0 1 0 -1

- = 1 -2 -3 3 4 -4
Az =P A= = ,
0 1 |-35 35 -3.5 3.5

— _ 1 2
Cow=CP_ =1 -2 =1 0
A MR

Observable structure decomposition of controllable subsystem is the following:

N 0 -1, -3.5 35| x4| |0
X2
From the observable transform of uncontrollable subsystem, we can know

HEE N

Above transform relationship is substituted into the observable structure

Then,

decomposition of controllable subsystem, and then we can get:
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x| _[-2 0 % o4 E3+ s
. 0 1], | [-35 35]xi] [0
X2
_[-2 0 %l +_' 4 —4]-1 2} %3 +[1}u
0 '4:WA -35 350 1], | [0
_[-2 0 % +‘—4 4 '%3+ 1u
0 -1 | 135 =35, LO

=l o][i“]

Summarizing above decomposition results, we can get that the canonical

decomposition of system is the following:

TIJ-2 0 -4 4 x| [0 X
N 0 -1 35 =-35], 0 N
V= 2 e, = 01 0]
: 0O 0 2 0 || x| |0 -
X3 ~ ~
. 0 0 0 U e L0 »
_x4_ - Q )

Example5.26 Please decompose the following system in terms of controllability and

observability.
0 0 -1 1
x=[1 0 —3|v+|1]u
0 1 -3 0
y=[0 1 -2}
Solution:
Judge the controllability of system; and then we can acquire:
1 0 -1
rankS, = rank[B AB AzB]: rank|1 1 -3|=2<n=3
0 1 =2

Hence, such system is not completely controllable.

Construct the non-singular transform matrix P, :

1 0 0
P=[110
01 1

Then we can gain structure decomposition of system in terms of controllability which

are as follows:
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1 0 0o o -1 1 0o o] [o -1 -1
A.=P'4P.=[1 1 0] |1 0 =31 1 0|=1 -2 =2
01 1/]0 1 =3[0 1 1] [0 0 -1
1 00 1 1 00
13,‘:110{ 0, c=[0 1 -2]1 1 ol=[1 -1 -2]
01 1 0 01 1

Then we can get two subsystems: controllable subsystem and uncontrollable

subsystem.
Controllable subsystem:

o EI R B A

Uncontrollable subsystem:

X; =X3=—X3, V, = —2x3
In the following, we will need to judge system observability for uncontrollable
system.
ranksS- = mnk[EE]z rank[-2]=1
Hence, uncontrollable subsystem is completely observable, and there is no structure

decomposition for uncontrollable subsystem.
For controllable subsystem, we can gain its observable judgment matrix S :

Ec 1 -1
rankS,, =rank| — — |=rank 1 1 =l<n, =2

c

Hence, controllable subsystem is not observable, and we need to select non-singular

1 17" 1 o0
P, = =
0 1 0 1

Then observable structure decomposition of controllable subsystem is as follows:

— = I =10 —-1|1 O -1 1
Aw:PcoAcPco: =
0O 1|1 =20 1 I -2
- 1 —1T-171 o] [1
£, Ank, = =
0 1]-2(0 1 -2

transform matrix P, :
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Namely,

o

Summarizing above results, we can gain the following canonical decomposition of

system:
o N S R T T N
L=l =2 =2 [+ O
0 0 -1f-1]1L0
~ - X3
| X3 | -
xi
y=[1 0 =2]x
X3

5.8 Realization of Transfer Function Matrix

Transfer function which demonstrates the information transfer relationship between
system input and system input only shows the dynamic action of controllable and
observable subsystems of system. For transfer function matrix, there are infinite state space
expressions; that’s to say, a transfer function could depict infinite systems with different
inner structure. In infinite systems with different inner structures, the system with minimum
dimensions is the problem'of minimum realization.

5.8.1 Basic conception of realization problem

If a state space could be depicted by the following expression

x=Ax+ Bu (5107)
y=Cx+Du

The transfer function matrix of equation(5.107) could be gained as follows:
G(s)=C(sE-4)"'B+D (5.108)
State space expression in equation(5.107) is called the realization of transfer function
matrix G(s). We have deduced expression in equation(2.176). Here, we want to point out
that no any a transfer function matrix finds corresponding realization. Transfer function
matrix G(S) needs to satisfy the objective condition of realization, namely:

(1) In each transfer function unit of transfer function matrix, polynomial coefficients
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of denominator and numerator are both real constants.

(2) In each transfer function unit, the order number of denominator polynomial is less
than that of numerator polynomial.

When the order number of denominator polynomial is equal to that of numerator

polynomial, we can gain the following expression:
D =1imG(s) (5.109)

s—0

In terms of equation(5.108), we can gain the realization of state space (A, B, C ):

C(sE—A4)'B=G(s)-D (5.110)

5.8.2 Realization of controllable canonical form

We assume that transfer function matrix of SISO system is the following

( )_ EnS" +Bn—lsn_l +-~-+E1S+Eo

G(s)= (5.111)

Ans" +ans"" 4+ @15 +ao

If there is no common factor between denominator polynomials and numerator
polynomials, or if there is no appearance of counteraction between them, expression in
equation(5.111) could be converted into the following form:

n-2

n—1
b, " +b, ,s" " +--+bs+b,

G(s)=— — — +d (5.112)
s +a, s +a,,s “+--+as+a,

n

For SISO system, we can gain the following expression from equation(5.112):

n—1 n-2
¥(s) = —DumtS 08T H DS HO iy, () (5.113)

n n-1 n-2
S +Cln_1S +an_2S +~-+als+a0

We order the following expressions could be found:

b, "' +b s"7+---+bs+h,
Y(s)=——"— = U(s)
s"+a, s" +a,,s" " +-tas+a,

1 (5.114a)

- b, 5" +b, 5" +--+bs+b,JU(s

s"+a, " +a, 5"+ +as+a, ( i n-2 ! O)U( )
,(s)=du(s) (5.114b)
The corresponding block diagram is shown in figure5.5.
d
Uls) 1 Z{s) . .
b s +b 8" 4+ bs b,

n 1 n—2
A +arls +an723 +"'+01S+ao

Figure5.5 Equivalent transformation of equation(5.114)

New variable Z (s) 1s introduced to transform transfer function into differential

equation group:
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Z" + aHz("—l) +:+a + a, =u
= 2 kb by (5.115)
y, =du
Y=n+tr
Take a series of state variables, x, =z, x,= ;, X, :.z., X, =z , and then
we could acquire the following state equation:
X =1,
X2 =x,
: (5.116)
—
).cn =z = —ay X, —a,x,—-—a, X, +u
Equation(5.116) could be expressed as matrix form:
o 1 0 - 0 ] [O]
0 0 | R : 0
x=| : o 0 x|t (5.117a)
0 0 0 ‘o 1 0
=4 —4 74y, o —4,, ] [1]

y=byx, +hx, +--A4b\x +du=[b, b, b, x+du (5.117b)

Equation(5.117) is called the realization of controllable canonical form.
Example5.27 Please gain the realization of controllable canonical form on the

following system.
s*+4s5+6

T P 112521 65+10

G(s)

Solution:
In terms of equation(5.117), we can gain the realization of controllable canonical form

1s such:
0 1 0 0

x=| 0 0 1 |x+|0fu
-10 -6 -2 1
y=[1 4 6]x
Here, we should note that no all transfer functions are transformed into the realization

of controllable canonical form. Only controllable system could be transformed into the
realization of controllable canonical form. However its form is not only limited to above

form.
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5.8.3 Realization of observable canonical form

Transfer function in equation(5.112) is marked as follows:

b, s"" +b, 5"+ -+bs+h,

G(s)= +d =G,(s)+G,(s) (5.117)

n n-1 n-2
S +an_1s +Cln_2S +---+als+a0

U(s) s"+a, s"" +a, ,s" ++as+a,

G.(s)= Y,(s) b, s" " +b, 5" +--+bs+b, G.(s)= Yz(s)_d
Uls)
Differential equation of transfer function G (s) can be depicted as follows:

yl(n) + an—lyl(n_l) tota yitagy, = bnflu(n_l) +-oo 4 b u+ by (5.118)

Initial condition is yl("’l)(O), -, 3,(0), »(0); u(”’l)(O), -, u(0), u(0).
Laplace transform is exerted onto equation(5.118) and then we can gain
Selecting state variables is as follows:

‘xn = yl
xn—l = yl+ an—lyl _bn—lu =Xnt an—lxn _bn~1u
X, =yta,, y,=b, u=b, ,u=xs1t+a, ,x, —b, u (5.119)
X = yl(n_l) + an—lyl(n_Z) - bn—lu(n_z) + an—2yl(n_3) B bn_zu("_3) +otay, —bu

=x2+a,x, —bu
Obviously, under the condition of given transfer function and input signalu(t), output
signal Y(s) could be ensured if initial state is given; then dynamic characteristic could be

uniquely ensured. Hence above variables selected could satisfy the condition of state

variables and they could be considered as state variables.
X2=x,—ax,+bu

X3 =X, —a,x, +b,u

.
Xn-1 = xn—2 - an—2xn + bn—2u

Xn=X,,—a,,x,+b _u

Furthermore,
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(n) +4a, y,—bu

x| = yl (n—l)

+a, (1)

(n—Z)

ta, (-2)

- bn—lu - bn—2u

B (yl(n) + an—lyl(nil) + an—Zyl(niz) teeet al y1+ aoylj

- (bnlu(”l) + bnfzu(”’z) + bHu(H) +-+ b u+ bouj —a,y, +byu

=—a,y, +byu
=—ayx, +byu

Hence, we can gain the following state equation:

L]
X1 =-ayx, +byu

X2=x,—ax,+bu

(5.119a)
).Cn—l =x,,—a, X, +b _u
).cn =x,,—a,x,+bu
Or,
[0 0 -+ 0 —qa, | [h)
) 0 -+ 0 —gq b,
x={0 1 -+ 0.-=a,|x+|b, [u (5.119b)

0 01 —a, | |b,]

Output equation is as follows:
y=y4y,=[0 0 - 0 1x+du (5.119¢)

Above realization is called the realization of observable canonical form.

We could easily find. that the coefficient matrices between controllable canonical form
and observable canonical form transpose each other. Namely, the following expressions are
always found:

A =4", B =C!, C.=B' (5.120)

Above characteristic is called dual characteristic.

Example5.28 Please acquire the realization of observable canonical form on the
following system.

s +45+6
Gls)= s*+ 4257 +65+10

Solution:

In terms of the solution of example5.27, we can know these coefficient matrices:

0 1 0 0
A= 0 0 1], B=0],C=[ 4 6]
10 -6 -2 1
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From the relationship shown in equation(5.20), we can acquire the following
observable canonical form:

0 0 —10] [1
x=[1 0 —6|x+|4u, y=[0 0 1}
01 -2 6

5.8.4 Realization of diagonal canonical form

We assume that system transfer function is the following:
G@):? (5.121)

Denominator expression in above equation could be expressed as follows:
D(S):(S_Sl)(s_sz)(s_ss) """ (S_Sn)
If poles of equation(5.121) is s, ( =1,2,- ) , equation(5.121) could be decomposed

into the following form in terms of partial fraction theory.

¢ G ..., G (5.122)
s—s,  S—S, s—s,

G(s)z

Among equation(5.122), coefficientC, can be calculated by the following expression:

C =lim(s=s, Jo(s)= ) (5.123)
e D(Si)

Hence, output signal Y (s) could be expressed as the following form:

Y(s)=G(s)u( Z—U Zc ZCX (5.124)
i=1 S S i=1 i=
Here,
X (s)= uls) (5.125)
S—S

Then output signal Y(s) could be transformed into the following form:
= CX,(s) (5.126)
We can gain such expression from equation(5.125):

sX,(s)—s,X,(s)=U(s) (5.127)

Corresponding differential equation is

Xi=8x+u; i=12,---,n (5.128)
Obviously, when initial state x, (O) and input signalu(t) are given, the output
signal y(t) would be uniquely confirmed. Hence, we can regard the group variablex, asa

group of system state variable. System state equation from equation(5.122) could be
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expressed as the following form:
X1 =8,X +uU

X2 =8,X, +U (5.129a)

Xn=8,X,+tuU

Or,
s, 0 0 1
0 s, 0 1
X= L lx+ . u (5:129b)
0 O s, 1
Output equation of system is
y=2Cx)=lc, ¢, - Gk (5.129¢)

All expressions in equation(1.29) are called the realization of diagonal canonical form.
We can easily find that system matrix A4 is a diagonal matrix which factors are roots of
system characteristic equation. Input matrix B is a column vector which all factors are one;
and output matrix C is a row vector which factors are the numerator coefficients in
equation(5.122).

Example5.29 Please acquire the realization of diagonal canonical form on the
following system.
s +354+5

Gls)=
(5) s +7s* +14s5+8

Solution:
D(s)= ' +7s> +14s+8 = (s +1)(s + 2)(5 +4)
Hence, system transfer function could be transformed into the following fractions:
G(s)= ¢ , G, G
s+1 s+2 s+4
In terms of equation(5.123), the coefficients of fraction could be gained:
€ i SIS g €3S 30 e3eeS 3
s> (s +2)(s +4) >2(s+1)(s+4) 2 oeoa(s+1)s+2) 2
The realization of diagonal canonical form is the following:
-1 0 0 1
x=0 -2 0 |x+|1lu
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5.8.5 Realization of Jordan canonical form

If system transfer function has several same poles, it would be realized by Jordan
canonical form. In order to explore the case of » multiple roots and that other roots are
single root, we assume that the fraction of transfer function is the following:

G(s)zi < _+§n: < (5.130)

i=1 (S -5 )l =18 TS

Fraction coefficient C; could be acquired by residue theorem.

1 ) d(r—i) .
A m d [s-s.y 6(6)] .131)

ZC £ 0 —0 o)

i=r+1

Order
Xi(s)_ U(Sﬁ),'ﬂ i:1925“'r (51323)
(S_Si)’ l
U(s) .
X,(s)= ; i=r+lLr+2,---n (5.132b)
5=,
When i=r,
x5)=2)
§—8,

Its differential equation is x,—s,x, =u ; hence when initial state x, (0) is given,

system state x, (t) could be uniquely confirmed.

For,
X (s)= uls) 1,27
i (S_Sl-)r i+1
then,
X, (s)= U(S)f. i=12,r-1
i+1 (S—Si)r i
X(s)=——X.,(s} i=12,r-1
§—

Corresponding differential equation is the following:

Xi—8;X; =X i=12,---r—1

i+1;
Order i=r-1,

Xr1—8X,_| =X

”

System state x,(¢) has been gained; hence when x,_(0) is given, state x,_(¢)
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could be uniquely confirmed. In terms of similar methods, we can acquire a series of

state x, _, (t), X, 3 (t), X (t)
Similar to the deduction of diagonal canonical form, we also have the following

expression:

Xi—S.X; = u;

When x,(0) is given, state x,(¢) will be uniquely confirmed.

Summarizing above discussion, we can know that state x,(¢) could be regarded as

i=r+lLr+2,---n

system state variable. Then state equation of equation(5.130) is the following

X1 =8,X, + X,

X2 = 8%, + X,

Xl = SE (5.133a)
Xr=8X, +u
).Cr+1 =5,.,X,., +tu
).cn =s5,X, +u
Or,
_Sl L0 v o .. 0] o]
0ws, 10 0 0
0 0 : :
¢ s, 1 : 0
b 3 L+ |u (5.133b)
s; 0 : 1
0 0 s, : 1
0 )
10 0 0 s,] |1
Output equation is such
Y(s)zi C ..X ZCX (5.133c)
i=1 i=r+l
c, C., - Cl  (5133d)

y= ZC, 1+1x+ZCx— . C.

i=r+l

Example5.30 Please acquire the realization of Jordan canonical form on the following

system.
2s+1
Gls)=
() sY+8s7 +21s +225+8

Solution:
Factorize the denominator of system transfer function G( )
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D(s)=s*+8s +21s* + 225 +8 = (s + 1)’ (s +2)(s + 4)

Obviously we can easily find that there are two multiple roots in D(s) polynomial.

And then partial fraction of system transfer function G(s) is the following:

C C C C
Gls)=— 2 3 4
(S) s+1+(s+1)2+s+2+s+4

Apply residue theorem o above expression of system transfer function G(s). And then

we can acquire above undetermined coefficients C, .

2s> +65+8)— (25 +1)25+6) 10

C, = lim Ldi[(sﬂ)z(;(s)]: lim
S

o (2 - 1)! sl (s2 + 65+ 8)2
1 ) . 2s+1 1
C, =1 1 G(s)|= lim — 0 —— = ——
? 552(2_2),[(“) (S)] sgfll(s+2)(s+4) 3
. ) 25 +1 3
G = tims 2000 =l s
2s+1 7

Cy = limfs+4)01s)= lim <315
\ Sgg(s+ )G(s) SEE(S+I)Z(S+2) 18

Hence, state equation of system transfer function is such:
-1 1 0 0] Jo

0 -1 0 0 1
X= X+ |

0 0 -2 0 1

0O 0 0 -4 1

Output equation is the following:

_| L1037
IT3 3 T2 18

5.8.6 Minimum Realization

Transfer function only demonstrates the dynamic action of controllable and observable

subsystem from whole system. For a realizable transfer function matrix, there will be

infinite corresponding state space expressions. In the viewpoint of engineering, how to find

such realization with minimum dimension will be very significant.

1.Minimum realization definition for state space expression

We assume that a realization of system transfer function G(s) is the following:

x=Ax+ Bu
y==Cx

If there is no other realization of the following

x=Ax+Bu
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y=Cx (5.135b)

Its dimension of state variable x is less than that of state variable x . Then the
realization of equation(5.134) is called minimum realization of system transfer
function G(s).

System transfer function G(S) only demonstrates the dynamic action of controllable
and observable subsystem from whole system, hence some uncontrollable or unobserved
state subsystems are eliminated and these eliminated subsystems don’t affect system
transfer function. That’s to say, such system transfer function with uncontrollable ot
unobserved subsystem will make that some control system does not become a minimum
realization. And then how do we perhaps find minimum realization of system?

2.How to find minimum realization from state space expression

A realization of system transfer function G(s) is the following:

x = Ax+Bu (5.136a)
y=Cx+Du (5.136b)
Then the sufficient and necessary condition of minimum realization is that
equation(5.136) is controllable and observable. In terms of such recognition, we can
ensure the minimum realization of any a system. The transfer function G(s) of
equation(5.136) as we have known in chapter2 is the following:
G(s)=C(sE~ 4)'B+D
If D=0, wecanget G(s)=C(sE—A4)"B.
The common procedure of finding minimum realization is the following:
(1)For a given transfer function G(s), firstly select a realization Z(A, B, C) of
system; the simplest methodis to select controllable canonical form or observable
canonical form.

(2)For above original realizationZ(A, B, C ) , decompose original
system Z(A, B, “C) in terms of controllable canonical form.

(3)Then on the basis of the decomposition of controllable canonical form, decompose
systemin terms of observable canonical form.
(4)Ensure controllable and observable subsystem, such subsystem is a minimum
realization.
Example5.31 Please find the minimum realization of the following system.
1 0 0 -1 2

- lo =3 0 o0 1 Ca 21 2
= x+| ju, y=|-4 -

0 2 1 0 R

00 0 -2/ |o

Solution:
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According to given dynamic equations, we can gain:

1 0 0 -1 2
) 0 -3 0 0 . ) 1
System matrix 4: 4 = 0 : , Input matrix B : B = 5
0 0 0 -2 0
Output matrixC:C=[-4 -2 1 2]
Stepl, judge whether given system is controllable.
2 2 2 2
5 3 1 -3 9 =27
ranks, :mnk[B AB AB A4 B]zrank =2=n<4=n
2 4 -2 16
0 0 O 0

Hence, given system is not completely controllable.
Step2, in terms of controllable decomposition, we need to acquire new system.
We may select two linearly independent column vector such as:
p=l2 120, p=[2-340f
And then we select two other linearly independent column vector to construct

non-singular transform matrix P, :

2 200
1 =300
P=
T2 4 10
0 0 01

Inverse matrix of transform matrix P is the following
0375 025 0 O
0.125 -025 0 O
- 0
1

-1

‘ -125 05 1
0 0 0

Then in terms of controllable decomposition, we can get new dynamic equation:

0 3 0 -0375 1
. 1 -2 0 -0125| — . o
AL:})C APC: 5 BL:PL B:

0O 0 1 1.25 0

0 0 O -2 0

C.=cp =[-8 2 1 2]
Namely, new system equations are as follows:

0 3 0 -0375

1
2 0 —0.1251- |0
A, y=[-8 2 1 2
1125 [olf y=| 5
0

0 -2

=1
X =
0 0
0 0
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Step3, we continue to decompose the new system in terms of observable characteristic

of system. Controllable subsystem is the following:
ol o 37x] [0 —0375]x] [1
Xl = 2+ 24 e
= I =2 x| |0 —0.125]x4] |0
X2
y1=[—8 2{1“}
X2

Uncontrollable subsystem is the following:

S o125T X
o= By = 2]

0 -2 X4 X4
X4

Here we decompose the uncontrollable subsystem in terms of observable
characteristic of system if this subsystem is not observable.

C: 1.2
rankS- =rank| — _ |=rank "l
@ C:A: 17 =275

Hence uncontrollable subsystem is observable.

The judgment matrix S,, of controllable subsystem is as follows:

C. =8 2
rankS ., =rank| — <. |=rank =2
/ 2 =28

Hence controllable subsystem is also observable.

Controllable and observable subsystem matrix Ao

- 0 3
Aco =

Controllable and observable input matrix Beo:
Bo=[1 0]

Controllable and observable output matrix Ceo:
Cow=[-8 2]

Step4, testify above given matrices to ensure minimum realization of system.

- — = = 1 0
ranksS. = rank[Bco AcoBeo |= rank{o J =2=n,

- CCO - 8 2
rankS, =rank| — — |=rank =2=n,
Cco Aco 2 -28

Hence above controllable and observable subsystem Z (Zco, Eco, Eco) 1S minimum

realization which we find according to given transfer function in this example.
As we have known, system transfer function is that of controllable and observable
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system in new system. Hence system transfer function is as follows:
G(s)=C(sE—A) ' B =Co(sE-4) Buo
Here, we utilize recurrence method to gain the inverse matrix of
expression (SE —Aeo )71 .

B =F, a, = _ﬂ"(ZcoBl ): —tr Ao =2

= ~ 23 1 (= 1 (30
B, =AwB +a,E= A4, +2E = > 4 =__tr(ACoB2)= ——1r
1 0 2 2 |0 3
1
2

- ¥ Bs+B 1 10 23
(SE—Aw) == s+ T 2003
s“+as+a, s +25s-3|/0 1 1 0 s°+

G(s)=CursE - Aes) ' Buo =

3.How to find minimum realization from system transfer function matrix.

For multi-input and multi-ouput system, if it could be written into the form of

e S I0) IR
s +2s5-3 1 s|0 s +2s—3

single-input and single-output system, we can assume that the following expression of

multi-input and multi-output system is as follows:
G(S): ﬂn—lsn_l +IBn—2Sn_2 ) .+ﬂ1S +ﬂ0

n n-1
S +Cln_1S +---+a1s+a0

In equation(5.137), B,., B, - B

(5.137)

p, —mxr constant coefficient matrix,

denominator polynomial is system characteristic polynomial.Obviously, transfer function in

equation(5.137) is matrix of rational form. When m = r, transfer function in

equation(5.137) will become a single-input and single-output transfer function.

For transfer function in equation(5.137), its controllable canonical form is as follows:

0, E, 0, 0,
0, 0, E, 0,
A = : : : . :
0, 0, 0, E
-k, —-aE  -aE - -—a E |
0,1
0,
B =| :
0,
_E"_
C=B B - Bo Bl

(5.138a)

(5.138b)

(5.138¢)

In above controllable canonical form, 0,and E,  are rxr zero matrix and unit

matrix respectively; sign7 is input dimension of transfer function G(s); signn is highest

order of characteristic polynomial.
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Similarly, the observable canonical form for equation(5.137) is as follows:

Om Om Om _aOEm |
Em Om 0m _alEm
A=l0 E - 0 -aF, (5.139a)
_Om Om Em _an—lEm_
_ﬂo -
By
B, =| B, (5.139b)
_ﬂn—l_
c, =0, o0, E,] (5.139¢)

Here,0,and E, are mxm zero matrix and unit matrix respectively; signm is

output dimension.
After we gain the controllable or observable canonical form, we need to find the

controllable and observable subsystem in relative canonical form. Finally ensure the

minimum realization.
Note that the dimension of minimum realization hasto be less than that of given

system.
Example5.32 Please find the minimum realization of the following system.
s+4 1
—| s+1 s+3
G(S) s s+1
s+1 s+2
Solution:

Step1 achieve the controllable canonical form of given transfer function matrix.
Convert the given transfer function matrix into a real fraction, namely

s+4 1 3 1
G(s): s:q!—l ij—? _ s+11 S+13 _{1 ﬂ
s+l s+2) L s+l s+2
That’s to say,
3 1
G(s)=C(sE-4)"'B+D=| SHI s+3 +E ﬂ

s+1 s+2
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C(sE-A)'B=

3

s+1
1

s+1

1

s+3

S

1 b

+2

]

Adjust and merge the polynomial of expression C (SE - A)f1 B in the form of

decreasing power.

C(sE-A)'B=

1

3

s+1
1

s+1

T 9165 +115+6

15

1

<43 1 35 +15s+18 57 +3s+2
1 S +65°+11s+6| —s*—55—-6 —s>—45-3
s+2
1], [15 3 18 2
S+ S +
-1 -5 —4 -6 -3

Comparing with equation(5.137), we can acquire the following parameter matrices:

.

18
-6

2

2 A

a, =6,

15

5

a, =11,

3

)

2

a,=6

3

R

1}
, m=r=2

Above coefficients and coefficient matrices are substituted into equation(5.138) and

then we can achieve controllable canonical form.

02><2
Ac = 02><2
—a,E,,
02><2
Bc = 02><2
E

2x2

- O O O O

E2><2
02><2

-a,E,,

- O O O O O

, C.=

c

0 0
0 0
02><2 0 0
E2><2 O 0
-a,E,, 6 0
i 0 -6
18
[ﬂo ﬂl ﬁz]: _6

1 0
0 1
0 0
0 0
11 0
0 -1
2 15
-3 -5

0 0]
0 0
1 0 1 0
D=
0 1 L J
-6 0
1 0 -6]

—4

3 1
-1 -1

Step2 judge whether above controllable canonical form is observable.

S

co

18
-6

CC
~18

= CCAC =

: 6

CCAC
18
-6

2
-3
-6

6
18

-12

15
-5

—-15

5
15
-5

3
—4
-9

8
27
~16

31 ]
-1 -1
-3 -3
1 2
39
-1 -4

For rankS. =3 <6, this controllable canonical form is not completely observable,
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namely, the controllable canonical form is not a minimum realization.

Step3 observably decompose the controllable canonical formz (4, B

Observable transform matrix P, is selected as follows:

c?o

(18 2 15 3 3 1770 o0 o0 10
-6 -3 -5 -4 -1 -1 0 0 0 0 1
P -18 -6 -15 -9 -3 -3 _ 0 0 0 0 o0
’ 1 0 0 0O 0 0 0 -1 03333 0 -1
0 1 0 0O 0 0 05 0 0.1667 -6 0
0 0 1 0 0 0] |-05 3 -15 0 1
Hence, observable canonical form is as follows:
0 0 1 0 0 0]
-05 -2 -01667 O 0 O
A= AP - -3 0 -4 0 0 0 :Fw 0
0 0 0 0 0.1 An A
-1 0.3333 0" =1 .0
| 0.5 0 0.1667 =6, 0 —5]|
SR
-1 -1
R I Fm} \ {1 0000 O
B=P B.= = ) =C.P, =
0 O 0 01 0 0O
0 O
_O 0_

C,).

S~ O O

O}:[ao 0]

Then we can gain the controllable and observable subsystemz (Zco, B, Co ):

0 0 1 31
— - — 1 00
Ao =|-05 -2_+0.1667|, Bo=|-1 -1|, Ceo=
010
-3..0 -4 -3 -3
Step4 confirm the minimum realization of system.
31 -3 -3 3 9
rank§c=[Ew Aco B (ZW)ZECU]zmnk ~1 -1 1.0001 2.0001 —1.0003 -4.0005 =3
-3 -3 3 9 -3 -27
! 0 0 |
— 0 1 0
CCU
- — = 0 0 1
rankS., =rank| Ceo Ao |=rank =3
— [~ -0.5 -2 -0.1667
CCO(ACO)Z
-3 0 -4
11.5001 4 0.5002
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Hence, minimum realization of given system is subsystem Z (Zco, Beo, Eco).

Minimum realization of system is such:
0 0 1 3 1
- — — 1 0 0 1 0
Aa): _0.5 _2 _0.1667 N Bco: _1 -1 N Cco= ) D=
010
-3 0 -4 -3 -3
ExampleS.33 Please find the observable canonical form of example5.32.

Solution:
In terms of results in example5.32, we can gain the following parameter matrices.

a,=6, a =11, a,=6

s 2 15 3 NERR N
h=lle 3 Alos 4 Pl L) T

Comparing with equation(5.139), we can acquire the observable canonical form:

0000 -6 0
0 o —uE 0000 0 =6
P el N CERCECNS,
° O* E* _aE* 0100 0 -11
2x2 2x2 22x2 0 O 1 O —6 0
0001 0 -6,
18 2]
-6 -3
Py 15 3 000010
5 -\ |- ¢ o, £)-| }
-5 -4 000001
B 3 1
__1 _1_

Of course, we can also utilize dual characteristic in equation(5.120) to gain above

observable canonical form.

5.9 Pole Zero Cancellation and System Properties

As we have known, controllable and observable system and minimum realization have
same significance. At this time, we perhaps ask whether we could judge the controllability
and observability of given system by system transfer function. For SISO system, the
sufficient and necessary condition of system controllability and observability is that there is
no pole zero cancellation between numerator and denominator of system transfer function.
For MIMO system, pole zero cancellation appears in system transfer function, but it is
possible that system transfer function is controllable and observable. In this section, we will
discuss the theme of pole zero cancellation and system properties.
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For a SISO systemZ(A, B, C), state space expression is the following:

x=Ax+ Bu (5140)
y=Cx

The sufficient and necessary condition that system in equation(5.140) is controllable
and observable is that there is no pole zero cancellation between numerator and
denominator in transfer function G(s).

G(s)=C(sE—-4)"B (5.141)

Demonstration:

Sufficient demonstration.

If system Z (4, B, C) isnota minimum realization of transfer function G(s), there

will be another systemz (Z, E, E) which has less dimension.

x = Ax + Bu 5142
y=Cx
Furthermore the following expression is always found:
G(s)=C(sE—4) ' B=C(sE=4) B (5.143)
For the order of new system matrix 4 is less than that of original system matrix 4 ,
the order of polynomial det(sE —2) must be less than that of polynomial det(sE — A).
However if equation(5.143) is found, there must be the phenomenon of pole zero

cancellation in equation(5.141). Hence, the hypothesis that system Z (A, B, C ) isnot a
minimum realization is not found, that’s to say, system Z(A, B, C) 1S a minimum
realization of transfer function G(s).

Necessary demonstration.

If there is no pole zero cancellation in equation(5.141), system Z(A, B, C ) must
be controllable and observable. If pole zero cancellation exists in equation(5.141),

expressionC(sE — 4)"' B will be degenerated into a deflation transfer function. According to

this-deflation transfer function which has no pole zero cancellation, we can find a smaller

dimension realization. On the contrary, if there is no pole zero cancellation in
equation(5.141), expression C (sE — A)le must be a minimum realization, namely
system Z(A, B, C) must be controllable and observable.

Hence, we can utilize whether pole zero cancellation exists in system transfer function
to judge whether the relative realization is controllable and observable. However, if there is
pole zero cancellation in system transfer function, we will not confirm that system is
controllable or observable.
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5.10 Stabilizability and Detectability

A linear system is said to have stabilzabilityi if all of its unstable modes, if any, are
controllable.

If a system is stable, we say that this system has stabilizability. If a system is
completely controllable, it is stabilizable. In the general case, the subsystem defined by the
modes or states must be stable in order that the system should be stabilizable. For a linear
and constant system, the requirement is that all eigenvalues must be in the stable region,
that’s to say, the left-half of the s -plane for continuous-time system or unit circle of the
z -plane for discrete system. If an uncontrollable system has an positive eigenvalue, this
system will not be stabilizable.The significance of stabilizability is that even though certain
modes can not be controlled by choice of input or feedback, if they are stable(better yet
asymtotically stable), these modes will stay bounded(better yet decay to zero). This modal
behavior can often be tolerated in the overall control system.

A linear system is said to be detectable if all of its unstable modes, if any, are
observable.

If the system is stable, it is detectable. If it is observable, it is also detectable. In
general, the condition is met if the subsystem described by modes are stable. In the linear
constant case, the requirement is that all eigenvalues fall in the stable region of the complex
plane. If the unobservable state is unstable, such system is not detectable. The significance
of the detectability property is that if certain modes are unstable and hence subject to
growth without bound, at least this undesirable behavior will be obvious from the output

signals. No”’hidden modes™ can be allowed to grow secretly in an unstable fashion.

Chapter summary

This chapter mainly narrates system controllability and observability for linear system.
Furthermore, we also analyze the diagonal canonical form of state space expression and the
dual relationship between controllability and observability. Besides these content, we also
provide the knowledge of controllable and observable standardization for state space
expression, canonical forms and their corresponding realization. Finally, we depict the
stabilizability and detectability of system. In this chapter, readers need to mainly
understand and grasp the relative topic of system cotnrollability and observability such as
construct the judgment matrix of controllability and observability to judge the present state

of system.
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Review Questions

5.1. Please narrate the sufficient and necessary condition of system controllability.

5.2. How is the controllability of system output judged?.

5.3. Please depict how to transform a standard state space into a diagonal canonical form.
5.4. What case is the Jordan matrix suitable for?

5.5. How s the system transfer function transformed into the first controllable canonical
form?

5.6.Please narrate the main idea of canonical decomposition for system controllability.
5.7.Please demonstrate the whole deduction course of diagonal canonical form.

5.8.Please repeat the dual principle of state space expression.

5.9.Please explain the specification decomposition of linear time-constant system.
5.10.How could a minimum realization of given system be found?

5.11.How do we judge a given realization is a minimum realization of a given control
system?

5.12.How do we judge output controllability of a given control system?
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5.13.How do we judge observability of a given control system?

Problems

Problem5.1.Is the following system completely controllable and completely observable?
-1 2 -1 0
x={0 =3 0 |x+|0ju, y=[4 2 1)
1 -2 0 1
Problem5.2.Please try to judge the state controllability and output observability of the

following system:

1 20 0 0
. 1 0 0
x=|0 1 Ox+|0 1lu y= X
0 0 -1
01 2 1 0

Problem5.3.Please try to transform the following system into controllable canonical form.

sz ﬂ“m”

Problem5.4.Please confirm parametersa,b in the following state space expression.

).c:{g Zjﬁmu, y=[1 -1k

Problem5.5.Please acquire the minimum realization of following transfer function matrix.

s+2 s
_|s+5 s+2
G(S) s s+1
s+2 s+3
Problem5.6.Please acquire the observable canonical form on the following system.
s+2
Gls)=
) s’ +25’ +3s+6
Problem5.7.Please investigate the controllability and observability of the following system.
-6 1 0 1
A=|-11 0 1|, B=|6|, C=[1 0 0]
-6 0 0 5
Problem5.8.Please find the minimum realization of the following system.
I 0 0 -1 1
« |0 2 3 1 2
x= X+ |u, =2 3 -1 -2
003 0 |0 r=l k
I 1 2 4 2

-291 -



	Chapter5 Controllability and Observability for Lin
	5.1 Introduction of Controllability and Observabil
	5.1.1 Linear correlation and linear independence
	5.1.2 Definition of controllability
	5.1.2 Definition of observability

	5.2 Controllability of Linear System
	5.2.1 The first criterion of system controllabilit
	5.2.2 The second criterion of system controllabili
	5.2.3 Output controllability and its judgment crit
	5.2.4 Controllability of linear time-variant syste

	5.3 Observability of Linear System
	5.3.1 Observability judgment criterion of time-inv
	5.3.2 The second criterion of complete state obser
	5.3.3 Observability of linear time-variant system

	5.4 Diagonal Canonical Form of State Space Express
	5.4.1 System eigenvalue and characteristic vector
	5.4.2 System matrix
	5.4.3 System matrix
	5.4.4 Pattern matrix

	5.5 Dual relation between controllability and obse
	5.5.1 Dual relation of linear system
	5.5.2 Dual principle
	5.5.3 Dual principle of time-variant system

	5.6 Controllability and Observability Standardizat
	5.6.1 First controllable canonical form
	5.6.2 Second controllable canonical form
	5.6.3 First observable canonical form
	5.6.4 Second observable canonical form

	5.7 Canonical Decomposition of Linear System
	5.7.1 Canonical decomposition of controllability
	5.7.2 Canonical decomposition of observability
	5.7.3 Decomposition of controllability and observa

	5.8 Realization of Transfer Function Matrix
	5.8.1 Basic conception of realization problem
	5.8.2 Realization of controllable canonical form
	5.8.3 Realization of observable canonical form
	5.8.4 Realization of diagonal canonical form
	5.8.5 Realization of Jordan canonical form
	5.8.6 Minimum Realization

	5.9 Pole Zero Cancellation and System Properties
	5.10 Stabilizability and Detectability
	Chapter summary
	Related Readings
	Review Questions
	Problems




