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This chapter provides optimal control theory for readers.In this chapter, the optimal
control conception and variation method are respectively narrated and explained to help
readers to understand optimal control problem.Furthermore maximum principle and linear
quadratic optimal control and dynamic programming will be also narrated and analyzed to
aid readers to correctly apply optimal control into practice. In this chapter, readers need to
grasp three basic methods: variation method, minimum principle and dynamic

programming.

Objectives

When you have learned this chapter, you should be able to:

B Know what optimal control is.

B Understand basic methods of realizing optimal control of control system.
B Grasp core factors of minimum principle and dynamic programming.

B Recognize Bellman equation.

7.1 Concept of Optimal Control

In chapter6, as we have known, if system is completely controllable, a state feedback
matrix is always designed to make that closed-loop poles are equal to the desired poles to
reach the dynamic requirement desired. Control system indexes designed in terms of pole
assignment is mainly determined by the selection of the desired poles of closed-loop
control system; however in practical system, some indexes are maximum or optimal in
control system. Hence, optimal control is also a kind of design method which core problem
is how to select control signal to make system indexes be optimal in some significance.

In engineering, people always wish to find a best scheme to acquire optimal effect.

Similar engineering includes optimal problem.

For example, there are two warehouses where some goods are placed. There are 2000
merchandises in warehouse A, and 1500 ones in warehouse B.Three workshops I, II and 1II
respectively need 900, 600 and 1000 merchandises. If the merchandises in warehouse A are
carried respectively to the three workshops 1, II and III, the relative service fee is 1 §,
2% and 48. If the merchandises in warehouse B are carried apart to the three workshops I, Il
and 111, the service fee is 3%, 5$ and 8$. How is these merchandises carried to make that
transportation cost become cheapest? In nature, this is an optimal allocation problem.

We postulate that the number of merchandise from warehouse A to workshop I, 1I and

III is respectively x,, x,, x;;and that the number of merchandise from warehouse B
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to workshop I, Il and III is respectively x,, x,, x,.Then the total fee could be expressed
as
f(x): X, +2x, +4x; +3x, +5x5 +8x;
In optimal problem, function f (x) is called aim function. The task of optimization is
to confirm variable x to make that function f(x) get optimal value such as minimum

value or maximum value. But variable x is not free but limited by objective conditions
such as
X, +x,+x, <1200,  x, +x5+x, <1800
x+x,=900, x,+x,=600, x;+x,=1000
In this example, if aim function and constraint condition is a one-power function of
variable x , such optimal problem is called linear optimization problem. For the serving
fee from warehouse A to workshop I, II and III is cheaper than that from warehouse B to
workshop I, II and III, we should firstly select merchandises from warehouse A. So that
the above inequality could be converted into the following equality.
X, +x,+x,=1200,  x,+x;+x,=1800
Then above example will become an optimization problem with equality constraint.
Aim function and constraint conditions are not only limited to linear cases, the

variable of aim function is possibly nonlinear. Hence aim functionJ is generally expressed

as
J(x)=f(x) (7.1)
Equality constraint condition:
g{a=0,i=LLl~ym (72)
Inequality constraint condition:
h(x)<0, j=123,1 (7.3)

The optimal task is to find suitable variable x to make aim function be the most
optimal in all possible value.

If variable is constant or not related to time, such optimal problem is called static
optimization problem. Otherwise, optimal problem is called dynamic optimization
problem.

In practice, there are all kinds of optimal problem, and we do not possibly discuss all
cases. In this chapter, we only discuss the optimal problem which could be depicted by
system state equation.

The prerequisite of optimal control is narrated as follows:
1. State equation which is used to depict control system dynamically.
A given system state equation is

x=f(x, u 1) (7.4)
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Here, function f is » dimension vector function, and it can be continuously derived for

state variable x and time variable?.
For discrete-time control system, its state equation can be expressed as
x(k+1)= flx(k), ulk), k] (7.5)
2.Definite control scope

In actual engineering, control vector u(t) can not be usually any value in given
space R . For example, control voltage and control power in system can not be randomly
large, which have to be limited by some constraint conditions.

(oj(x, u)é 0, j=1L2,---;m(m<vr) (7.6)
The set of all points which can satisfy above expressed is marked as

U= %‘(t)b,.(x, M)SO} (7.7)

Equation(7.7) is said to control set. Control law u(t) which belongs to set u(t)eU is

called admissible control.
3.Definite initial condition

Usually, the initial time of control system is given and definite. If initial state x(¢,) is
given, such state is called fixed end. If initial state x(z,) is random, such state is called
free end. If initial state satisfies some constraint condition:

p; [x(z,)]=0, j=12,---,m(m<n) (7.8)
the relative initial end set is as follows:

Q, = ix(to)ip/[x(to)]:o} (7.9)

Then, x(t,)eQ,, such initial condition is said to variable end.

4 Definite terminal condition

Similar to initial condition, fixed end means that end time 7, and end state x(t f) are
given. Free end means that state x(tf) may be random under the condition of given
timez, . Variable end means such case x(t f)e Q. The objective set is formed by constraint

conditiong, [x(t 7 )J =0.

Q- {x(t f}% [x(,,qp} (7.10)

5.Performance index

Performance index expression could be generally expressed as
J=0lle,) o ]+ [T L) ule). o (7.11)
Here, first term is scalar term which is related to final time 7, and final state x(tf); and

this term shows the certain requirement for final state or final time. Hence we term

expression le(tf), th final term. The second term is integral term demonstrates the
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requirement satisfied by state vector and control vector in the whole control course. Final

hour 7, may be fixed or free, which is up to specific control problem.

For discrete control system, equation(7.11) could be transformed into the following
form:

J=0x(N)]+ > Llx(k), u(k), k] (7.12)

In equation(7.11) and equation(7.12), the second term is actually dynamic index
function. If we do not consider

If final term H[x(tf ), th is not considered, the corresponding performance index

expression can become

J=["Lx(t), u(t), tl (7.13a)

N-1
J=> Llx(k), u(k), k] (7.13b)
k=k,
Such index form in equation(7.13) is called integral form of optimal control.

If dynamic index term is not considered, performance index function will be
J=0x,) ] (7.14a)
J=0[x(N), N] (7.14b)

Equation(7.14) is called final form of optimal control.

Optimal control problem is to find a best control vectoru(¢) in given control variable
collection to make that the performance index of controlled system could acquire optimal
index from original state to aim state. Control vectoru(z) which could make control system
holds best performance indexes is called optimal control u'(¢) . The solution of state
equation in optimal control vector u(t) is called optimal trajectory x*(t). The performance

indexJ acquired along the optimal trajectory x*(t) is called optimal index J " .

If control system is designed in terms of linear quadratic performance indexes, linear
control law can be easily realized to acquire success in engineering. The common form of

linear quadratic performance index is the following:

7 =350l o I )+ (0ulo b (1.15)
Linear quadratic performance index of discrete control system:
s =3 (W0, (V{3 S (00 +o” (e eli]  (116)
Here, matrices Q,(t,), 0,(t), 0,(t) and OQO(N), 0,(k), 0,(k) are both weighting

matrix.
Definition of Optimal Control Problem From all among all admissible control
functions ueU , find that one which minimizes J of equation(7.5) subject to the
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dynamic system constraints of equation(7.4) and all initial and terminal boundary
conditions that may be specified.

If the control is determined as a function of the initial state and other given system
parameters, such control system is said to be open-loop. If the control is determined as a
function of the present state, then such control is a closed-loop or feedback control law.

If the control system is completely controllable, there is at least one control which will
transfer any initial state to any desired final state. If control system is not controllable, it is
not meaningful to search for the optimal control.

However controllability does not guarantee that a solution exists for every optimal
control problem. Whenever the admissible controls are restricted to the setU , certain final
states may not be attainable. Even though the system is completely controllable, the

required control may not belong to set U .

7.2 Static optimal control

The objective function of static optimal control problem is a multiple variable function
in nature. Its optimal solution could be gained by classical differentiation. The objective
function of dynamic optimal problem is a functional which extreme value can be acquired
by variation method. Now let’s review mathematical model of linear programming
together.

7.2.1 Mathematical model of linear programming

A company produces two kinds of products A and B . The resource, material and
laboring day are listed in the following table7.1; please find how to make maximum profit.
Table7.1 Information of products

Materials A Product B Product Sources
Brass(ton) 9 4 360
Power(Kilowatt) 4 5 200
Working days 3 10 300
Profits(Million RMB 7 12
per kilogram)
Solution:

We postulate that this company may produce product A4 with x, kilogram and
product B with x, kilogram; and then we can know the total profit expression:
S ="T7x +12x,
The mathematical model of this problem can be depicted as the following:
Objective function:

max S = 7x, +12x,
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Constraint conditions:
9x, +4x, <360
4x, +5x, <200
3x,+10x, <300
x,>0(=12,-)

Summarize above optimal problem, we can gain the following characteristics:

(1) Each problem is to find the value of a group of variable. The value of some group
of variable represents a specific scheme.

(2) There are some constraint conditions. These constraint condition could be
expressed by equality or inequality.

(3) A desired object function need to be calculated to find an optimal value.

The optimal problem with above three characteristics comes down to linear
programming problem, which mathematical model is said to the mathematical model of
linear programming.

The general mathematical form of linear programming model is

max(or min)f(x) =CX, +CyX, +CyXy e +c,x (7.17)

General constraint conditions:

a, X, +a,x, +a;sx, +--+a,x, < (:, Z)bl

A X0\ HA5, X HA LN - G, X, < (=, Z)b2
................................................ (7.18)
A, % HA X, T8 X+ - Ha,, X, < (=, Z)bm
x,20(j=12,,n)

Variables x,, x,,---, x, are called to decision variable.
The basic steps of building the mathematical model of linear programming:
Stepl, confirm decision variables x,, x,,---, x, . Decision variables is the base of

building mathematical model.

Step2, give out constraint conditions, and add some auxiliary non-negative conditions
according to practical problem. Constraint conditions could be expressed by inequality or
equality. Usually, table is employed to confirm all limited data to avoid the unnecessary
limitation or requirements.

Step3, ensure objective function including ascertaining maximum or minimum.

Objective function has to be expressed by linear function of decision variable.

7.2.2 Extreme value of single-variable function

If we postulate that expression J = f(x) is a continuously derived function with

single variable in the range [a, b] , then necessary condition of finding its extreme value x

is the following:
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fx)_.=0 (7.19)

The necessary and sufficient condition that variable x~ is minimal value is
f&) =0, f'(x)>0 (7.20)

The necessary and sufficient condition that variable x” is maximal value is
Sx) =0, f(x)<0 (7.21)

Extreme point x* in terms of derivation of objective function is a stationary point,

which characteristics are as follows:
()When 1~ (x) <0, extreme pointx” is maximal point;
(2)When [ (x) =0, extreme pointx™ is inflection point;
(3)When f"(x)> 0, extreme pointx” is minimal point.
These extreme value f (x*) is only relative to adjacent value f (x) ; hence they have

partial characteristic, which is called to relative extreme value. In practice, there are a lot of

extreme points, and then we need to find a minimum among all minimal value f (x) .
Minimum has global characteristic and it is unique. Minimum is generally marked as
J = /(&)= min[f (x)] (7.22)

Example7.1 Please find the minimum of the following function which range of

variable is [-1, 5].
flx)=x*—6x" +8
Solution:
The first order derivative of given function is as follows:

f(x)=4x> —12x
Order f'(x)=0, and then gain:
x=0, x,= V3, X, = —/3 (discard)
Hence, the relative extreme value f (x) can be calculated when x=-1, 0, \/g , 5

fE)=3, £0)=8, fW3)=-1, f(s)=483
The second order derivative of given function is
f(x)=12x7
For expression f (x) is always greater than zero, all points in definition domain are

minimal except x=0.

Comparing above all extreme values, we can get minimum.

J =minlf(-1), () W3} rG)|=-1

Namely, when x = ﬁ , minimum f' (\/5 )= 1.
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7.2.3 Extreme value of multiple-variable function

Assume that a general form of multiple-variable function is as follows:
f=rlx, x, = x) (7.23)

The condition that above function ascertains extreme value is

. 0 (7.24)
Ox
Or its gradient vector is zero, namely
T
ve=| 2L 9 A (7.25)
ox, Ox, ox,
The necessary and sufficient condition of minimum is
o’ f
>0 7.26
ox? ( )
Namely, the following positive matrix:
B A A
ox;  0Ox,0x, Ox,0x,,
oo f o’ f o’ f o’ f
5 ~J  ZJ
Vif= P 0x,0x, ox3 0x,0x, (7.27)
of - ef . of
| Ox,0x,  0Ox,0x, Ox,0x,, |

Example7.2 Function f(x)=x” +5x? +4x2 + 4x,x, + 4x,x, — 6x, + 3 ; please find the

extreme value points of given function and minimum.
Solution:

In terms of equation(7.24) and equation(7.25), we can acquire

z:2x1 +4x,=0; i:10x2+4x3—6:0; i:8x3+4x2 =0
X, ox, X,
Solve above equation group and we can gain:
=2 _3 N
1 4 H 2 4 s 3

Hence, extreme value point is

3 3 37
X=— — —-=
4 4 8

The function matrix of second order derivative is:
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oy of o]
ox;  Ox,0x, Ox,0x, 20 4
vzfxzazf:: oy 82{ A 0 10 4|>0
Ox ox,0x,  Ox, 0x,0x,4
o’ f o’ f o’ f 0 48
| Ox,0x,  OxOx,  Ox;

3 T
" ——} is minimum point.

Hence, above matrix is positive; and point x:[%
Minimum f”(x) is the following:
f*(x*)—i+£+ﬁ 36 18 3_£

16 16 64 32 4 16

7.2.4 Extreme value with the condition of equation constraint

For extreme value with the condition of equation constraint, equivalent transform may
convert such problem into extreme value with the condition of no constraint.
Let me give an example, please find the volume of cuboid which volume is maximum
and which surface areais a’.
We can postulate that the radius and height of column is respectively » and # ; and
then we can get total area expression which is a constraint condition:
glr, h)=2mh+2m*—a’>=0 (7.28)
And the volume of cuboid is
J=V=mh (7.29)
The methods of solving such problem have many methods such as substitution method
and Lagrange method.
(1) Substitution method

From equation(7.28), the expression of variable # could be expressed as

2 2
a 2w

h (7.30)

2mr
Equation(7.30) is substituted into equation(7.29), and then given problem can be

transformed into no constraint problem.

2 2 2 2 2 3
2mr 2
The derivative of equation(7.31) for variable» 1is as follows:
2
WV _a 3p2_g (7.32)
or 2

® a
The solution of equation(7.32)is » =—, h =a,|—.
q (7.32) o .
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2

For - =—6m <0, above extreme point is maximum. Maximum volume is
r
J=v(, w)=4 ]2 (7.33)
6 \37
(2) Lagrange method

According to aim function of equation(7.29) and constraint condition of
equation(7.28), we can construct Lagrange function:
H=J+ig(r, h)=mh+i2wh+2m° —d®) (7.34)
Equation(7.34) is a no constraint function with three variable. Its extreme conditions
are as follows:
a—H=2;zrh+/1(2;zh+47zr)=o, OH _ 2 +2Amr =0, M s+ 27 —a® =0
or oh oA

Solve above equation group to gain extreme point:

. a . 2 . a |1
r = , h :a,/—, A =——|— 7.35
Vor RY/4 2\ 6r ( )

If extreme points of equation(7.35) is substituted into equation(7.34), we easily find

that expression Ag(r, #)=0 can be found.

Summarizing above Lagrange function, we can write common case.

Assume a continuous and derivative aim function:

J=f(x, u) (7.36)
Equality constraint condition is

glx, u)=0 (7.37)
Here, signx is n-dimension column vector; signu is 7 -dimension column vector;

and signg is n-dimension column function.
In terms of Lagrange multiplier, we can write out Lagrange aim function:
H=J+Aglx, u)=f(x, u)+g(x, u) (7.38)

Utilizing multiple variable function to solve extreme value, we can know that the

necessary condition of aim function which could have extreme value is the following:

OH _o  OH_,  O0H_, (7.38)
ox ou oA
Namely,
T
g+[a—gj A=0 (7.39)
ox \ Ox
T
ooy (), _, 40
ou ou \ou
glx, w)=0 (7.41)
Here,
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fog, T %8 %8 . %8
o ox, Ox, ox,
og) |%8| |% C& . 2
(a} = a:x = 8{1 6)'c2 . 6).cn (7.42)
%, | |og. d. . e
Lox 1 | ax, o, ox, |

Example7.3 Please find the extreme valuex” and u of aim function

J:f(x, u):%xTle+%uTQ2u;

It has to satisfy the constraint condition g(x, u)=x+Fu+d=0.
Matrices O, and Q, are positive matrices; and matrix /' is random matrix.

Solution: Construct Lagrange aim function:
1 1
H=J+2g(x, u)= EXTQIX +5uTQ2u + A (x+ Fu+d)

The extreme condition of above Lagrange aim function:

a—H:Ql)c+ﬂb=0, a—H=Q2u+Fﬂd=O, 8—H:x+Fu+d:O
ox ou oA

Combine and solve the extreme point:

u*z_(Qz"'FTQ]F)_lFTQ]d
x =_[E_F(Qz +FTQ1F)_1FTQ1Jd
ﬂ*::kQI—£217Q22*<Fwﬁlﬁj417qgup

Since matrices Q, and (Q, are positive matrices, obviously extreme point could

satisfy the minimum condition.

7.3 Extreme Condition of Variation Method and Functional

7.3.1 Functional concept

For independent variable, if there is a function {x(¢)}, a certain value J is related to
each function x(¢) ; then we think that variable J is a functional which depends on
function x(t) , marked as J [x(t)]

Apparently, the independent variable x of functional J[x(¢)] is the function of time
variable ¢ . Hence sometimes functional J[x(¢)] is called to the function of function. The

difference between function and functional is that the independent variable of functional is
function and that the argument of function is variable.
If functional J[x(¢)] satisfy the following relationship:
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Jax(¢)]= aJ[x(¢)] (7.43a)
Ilxle)+ )= I )]+ S (0] (7.43b)

then functional J[x(¢)] is linear functional; in equation(7.43), sign a is real and

functions x(¢) and y(¢) are the function in function space.

7.3.2 Functional variation

The variation & of functional variable x(¢) is defined as
S = x(¢)—x"(¢) (7.44)
Function x'(¢) is aim function an optimal trajectory in optimal control; and function
x(¢) is some function which have the same function space as aim functionx”(z).

The increment of functional J[x(¢)] could be expressed as the following

AJ[x(t), 5x] = J[x(t)+ 5x]— J[x(t)] (7.45)
If equation(7.45) can be converted into the following form
AT [x(t), §x] = L[x(t), 5x]+ B [x(t), §x]||5x|| (7.46)

And when ||5x|| —0, plx(), &|>0 and L[x(t), &] is linear functional of
variation & , expression L[x(f), &] is called to the one order variation of
functional Jx(¢)], marked as &7 .

In terms of above definition of variation, we can know that the variation of functional
is a kind of linear mapping; hence the calculation rules of variation is similar to linear
calculation of function.

Assume that F, and F, are both the function of function x , derivative x and
variablez; the following variation rules are always found:

1)8(F, + F,) = 5F, + oF,

2)8(F,F,) = F,0F, + F,0F,

3)5J‘F(x, . tjdt:J'SF(x, X, t)dt

#ysx=L 5
d

Example7.4 Assume F, and F, is the derivable and continuous function of

variablesx,y and y'. Please try to testify above rules of variation rules.

Demonstration:
1)8(F, + F,)= 6F, + oF,
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S(F+F)=L(F+F)o+ 2 (F+ By
ay oy
( 6+ @] (5@.+_a5 @'j
oy 0

(oo {0

= OF, + OF,
2)5(EF2):E5F2+F25E

0 0

B0 F) =2 (R 2

Y ay

= F2%+ 18F2 o+ anF F@i o
oy 6y oy 6y

- L Lo for| T Ly
:117'15F2+F2§F1
3)5]F<x, v, y')dxzjé‘F(x, v, y')dx

5[F(x. ». yh =%[[F(x, v, ¥ ]5y+—[[F X, y)dx
_ ;[%F(x, N yv)@}dﬁ ;[a_y,F(x, y, yv)gy}dx
2 s e SR i

= [oF(x, y. y)ax

FF)y

- d
Hoy=—
)oY Py oy
Sy= i(ﬂjéx i i(@jax'
ox \ dx ox \dx
= i(a—yjéx + i(a—yjéx
dx\ Ox dx \ Ox

Al
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7.3.3 Functional extreme

Assume that function x,(¢) is some function in all permissible function set X of
functional J[x(t)], for x e X , if the following inequality is always found:

TN < I, ()], or I[x(e)]= I, ()] (7.46)

then it’s thought that functional J[x(¢)] reaches maximum or minimum at x,(¢). And the
curve of function x,(¢) is called to the extreme curve of functional J[x(¢)].

If functional J[x(¢)] reaches extreme value at x(¢)= x,(¢), the necessary condition is

oJ

=[5 0]=0,0r &(x, m):dia](x* +eAx] =0 (7.47a)
& &=0

Demonstration:

Assume that the following expression reaches extreme value at a=0.
¢(a) = J[xo(t)+ a5x]

Hence,

4(0)=lim #la)-¢(0)

a—0 a

—1im J[xo(t)+a5x]—.][x0(t)]

a—0 a

—lim J[x0 (t)+ a§x]+ ,B(xo, a5x}|a5x||

a—0 a

= lirr(}{J [x, (), &]* B(x,, a5x)max|5x|}
When a >0, adx — 0;then ﬂ(xo, a5x)—> 0, hence
¢ (0)=Jx (1) & ]=a7=0

For multiple -variable functional,

J=Jx (), x (), o ,x, ()] (7.47b)
In equation(7.47b), x,(¢), x(z), -, x,(z) are both augmented functions.
Variation&/ of multiple-variable function is defined as follows
& =J|x,(t)+adx,, x(t)+adx, - . x,(t)+adk, ] (7.47¢)
The necessary condition that multiple-variable functional gets extreme is as follows:
oJ =0 (7.47d)

In practice, the optimal trajectory curve x'(¢) of functional J[x(¢)] is not usually
selected at random, but limited by all kinds of constraints. In order to explore the extremum
problem of functional J[x(¢)], let’s discuss the extreme problem of the following simplest

functional:
Jx@)=[ t‘F(x, X, tjdt (7.48)
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And equation(7.48) has to satisfy the boundary condition:
x(t0 ) =X,, x(t1 ) =X, (7.49)
Now let’s explore the condition when trajectory curve x(t) reaches maximum or
minimum. Assume that all permissible curves could be expressed by optimal curve x(t)

and real coefficient @ and the variation of curve x(¢), namely:

x(¢)=x(r)+ adi (7.50)
Term & is the variation of function x(¢), namely
& _ =& =0 (7.51)

Obviously, x

=X,, X

=x,. When a=0, x=x(¢) is extreme curve when
t=t,

functional J [x(t)] reaches extreme. Expression(7.50) is substituted into equation(7.48),

and then we can get the following equation:
¢(a) = J[x(t)+ aéx] = J.: F(t, x+adk, x+ a5x')dt (7.52)

Since ¢(a) gets extreme at a =0, in terms of the necessary condition of extreme,

_j (_5 +8—F5xjd 0 (7.53)
ox

According to integration by parts and equat1on(7.5 1), there is the following expression

fl@—Fa dr =["%E ()= BF, é'x}‘ i i(aFjd = ['ax i(gFjdt (7.54)

the following expression always exists:

¢'(O): —J[x( )+ aéx]

" OX th OX X dt\ o dt

Equation(7.54) is replaced into equation(7.53), and then yields to

ol OF d (OF
0 ==||——-— oxdt 7.55
#(0) J-[ax dt(@xﬂ (7.39)
If equation(7.55) is always found, then the following equation has to exist:
a_F_i(ﬁ_Ffj o (7.562)
Ox dt\ox

Namely, If functional J[x(¢)] gets extreme, the function x(¢) of functional J[x(¢)]
has to satisfy the above differential equation. The necessary condition that

functional J[x(¢)] gets extreme is the following:

>4 (o), {G_F(gx}
ox dt\ ox Ox

Equation(7.56) is called to the Euler equation of functional J [x(t)]

ly

=0 (7.56b)

ly

g
Example7.5 Please find the optimal curve of functional J = J[x(¢)]= jo (x2 +10tx)2’t .

Its constraint conditions are x(0)=0 and x(1)=1.
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Solution:

From given functional J[x(¢)], we can know:

F= (x')2 +10tx
According to Euler equation(7.56), we can write out the Euler equation of given
functional:

8_F_i 6_F =10t-2x =0
Oox dt\ ox

Solve above differential equation, and we can get
x(7)= %f +Ct+C,

Given constraint condition is x(O) =0 and x(l) =1, hence the unknown coefficient
of indefinite integral x(¢) can be solved:
1

C1=g C2=0

Hence the extreme curve x’(¢) of functional Jx(¢)] is
* _2 3
x'(t)= Ot

The extreme problem under equality is called the extreme problem of condition

functional J[x(¢)]. For such problem, it is usually transformed into the extreme problem of

no constraint condition by Lagrange multiplier in equation(7.38). For the form of

functional J [x(t)] in equation(7.48), Euler equation in equation(7.56) can be utilized, too.

7.4 Optimal Control Solution of Unconstrained System

Using Variation Method

We postulate that state equation of system is as follows:

x= (), ult) f,  xe)=x, (7.57a)

Performance index expression is
J=6lx(t, ) tf]+j;’ Lx(e), ule), lr (7.57b)
@ and L are scalar function.

The optimal control problem is to confirm the necessary condition of functional
J[x(¢)] reaching extreme value under the constraint condition of state equation in
equation(7.57). If control variable u() is not limited, such control problem will become no
constraint control problem.

If final term H[x(tf), th is not considered, the corresponding performance index
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expression may become the form of equation(7.48).

7.4.1 Optimal control solution by Euler equation group

If the final term of performance index expression is not considered, it will become
J= J'tt” Lix(t), ult), tht (7.58)

Although the form of equation(7.58) is the same as that of equation(7.48), they are
different in nature. Equation(7.58) is a multiple-variable functional which includes two

variables x(¢) and u(r). Adjust the form of equation(7.58) into the following:
Jx(e), ult)]= IL[t x(2), ule), x() u'(t)}dt (7.59)

The boundary condition of equation(7.59) is such
x(to):xo x(tl):xl
, (7.60)
”(to):”o u(tl):ul
In equation(7.59), the aim function integrated is a five-variable continuous function;
and the functions x(¢) and u(z) have second-order continuous partial derivatives. The
discussing method employed here is similar to that in section7.3.3. Forreal o and S, we

can construct function sets as the following:

x=x(t)+adx, u=u(t)+pou (7.61)
Equation(7.62) is the adjacent curve of the following equation:
=x(¢
{x ) (7.62)
u= u(t)

ox and ou are the variation of variables x and y ; namely,

&| =dul =& =du =0 (7.63)

0

Equation(7.61) is substituted into equation(7.59), and then we can get
J[;, ;]: Jx(e)+ ade, u(t)+ pou]

f , o , (7.64)
= J; L(t, xX+aox, u+pou, x +adx, u +pou )dt
Equation(7.64) gets extreme at o = =0, hence
o =0, a =0 (7.65)
0| ,_p- Bl,_s0
Namely,
ol ( 5x+—5xjd " a—L—i(aL] Sedt=0  (7.66a)
0t|,_po ox dt\ox
a j (‘% (su ja' [ a—L—i(aLj Sudt=0  (7.66b)
B o-p-o ou ou
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So that the necessary condition that functional J[x(¢), wu(¢)] gets extreme is such:
aL_dfoL)_
ox dt\ox

o _dfay_,
ou dt\ou

(7.67)

Equation group(7.67) is called to Euler equation group of equation(7.59).
Example7.5 Please find the optimal trajectory curve of functional

J [x(t), u(t)] = J: (x'2 +u’+ 2xu)dt ,which satisfy the following constraint conditions.

x(0)=0, x[%) =1

Solution:

L=x?+u"+2xu, hence Euler equation group is the following:
d ,
2u——\2x )=0
)
d ,
2x——2u )=0
dl‘( )

Namely,

Eliminate the variableu to yield to
x—x¥=0
Its general solutions of above differential equation are
x=Ce' +C,e’ +C,cost+C,sint

{u =Ce' +Ce’ —C,scost—C,sint

According to given constraint condition, we can get the unknown number of above
equation group.
C=C=C=0, C,=1

X =sint
u=-sint

Example7.6 Please find the optimal trajectory curve x"(¢)and control lawu’(¢) of the

Hence, optimal trajectory curve is

following functional J = I: %[uz(t)—u'2 (t)]dt ,which satisfy the following constraint

conditions.
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Solution

L= % [u2 (t)—ulz(t)], in terms of equation(7.67), we can get the following Euler

equation:
u—u =0
Solve above differential equation to get the following solution:
u(t)=Ce' +C,e”
In terms of given constraint condition, we may get the unknown number:

e —1 e —1

Hence, optimal control lawu" is the following:

Optimal trajectory curve x
x 6e’ , 6 , 12¢°
+ 6
e —1 e —1 e —1

7.4.2 Optimal control solution by Lagrange multiplier

If equation(7.57a) is the constraint condition of equation(7.57b), we may utilize
Lagrange extreme method to gain the extreme point. Specific deducing course is as
follows.

Constructing augmented functional J, is

J, =6, ) ]+ _[:’{L[x(t), u(t), t]+/1T[f(x, u, t)—x}}dt (7.68)

Constructing Hamilton function is

H(x, u, A, t) = L(x, u, t)+ /ITf(x, u, t) (7.69)
Here, A € R" is Lagrange multiplier vector, then augmented functional is
J=0lxle,) o+ ] {H(x, u, A, t)-A' ).c}dt (7.70)

We postulate that the original time ¢, and its state are both given, x(t,)=x,.In

terms of final boundary condition, the following cases will be discussed in the following:

Casel, final time7, is given and random, namely, final state x(tf) is random.

Augmented functional J,, is
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J, =0, )+ | ’ {H(x, w, A, 1)-A' ).c}dt
One-order variation of augmented functional J, is taken and ordered to be zero:
&, = (%]Tcsx [ |:[8—er5x+(aﬂjr&t +(aﬁjr&l Vs —/1T5§c]dz —0 (7.72)
ox o |\ Ox ou oA
In terms of partial integral method, the following expression can be known:
N A5 xdt = "7 ()= re] - ’ 3 e (7.73)

Equation(7.73) is replaced into equation(7.72) and expression 5x(to) =0 should be

noted. Then we can get
T T T
+j”’ M\ e[ M) 5[ P _3) salae=0  (7.74)
o\ Ox ou oA

(7.71)

T
o, = (%— /lj ox
Oox -
=t;

Since above variationsox, du and O6A are both random, one-order variationd/, of

augmented performance index functional J, is zero, namely the necessary condition of
that equation(7.57) gets extreme is as follows:
1) Positive equation

. OH(x, u, A, t)
State equation:  x = PY)

(7.75)
. . aH(x, u, A, t)
Adjoining(costate) equation: A =-— p (7.76)
X
2) Control equation: aH(x, g’ A, t)=0 (7.77)
u

3) Transverse equation: ﬂ,(t f)= Gﬁlx(tf ) J (7.78)
axit 7 )
We combine above positive equation and control equation to gain the optimal control

lawu"(¢), optimal state trajectory curve x"(f) and optimal co-state trajectory curve A'(¢).
Example7.7 A state equation is as follows

x(t) = u(t)

Initial condition is

x(to) =%
Please find optimal control law u"(r) which make the following performance index is
minimum.
2 v 2
J:Ecx (tf)+—J;0 u-dt, ¢>0
Solution:

This is optimal problem of that final time7, is given and that final state is free. For
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the control variable is not constrained, variation method may be employed to solve optimal
problem. Constructing Hamilton function is

H(x, u, A, t)=%u2 + Au
We can get from equation(7.76):
/.1 = _oH = —i(luz +/1uj =0
ox ox\ 2

Hence, A = Const . In terms of transverse condition, we may gain:
I I BTN
)= = a5l et)

From control equation, we achieve

a—H:u+ﬂu:O
ou

Namely,

u = i:—cx(tf)

Expression u 1is replaced into state equation, and we achieve

X=u= —cx(t f)
The solution of above differential equation is the following:
x(t)=—exle, Ne—1,)+ x(1,)
When =1, the following expression may be acquired:
xle, )=—exle, e, —1,)+ x(t,)

So that,

Optimal control law is

Cx(to)
1+ citf -1, )

Case2, final time7, is given and final state x(t f) is constrained.

We postulate that the final constraint is
Mlxle, ) ¢, |=Mx(e, )|=0 (7.79)
Final state x(t f) moves along the given boundary curve. Constructing augmented

functional J,, is

7, =0lxle, JJ+ 0" M[x(e, )|+ I{L(x u, t)+/1T{f(x, u, z)—;}dz

. (7.80)
:Q[x(tf)]+UTM[x(tf)]+JZ{H(x, u, t, ﬂ,)—/lT x}dt
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Here, M, veR.
For augmented functional J, , one-order variation is taken and ordered to be zero. The

deducing course is similar to that of casel. The following expression could be acquired

T T T
S +j”' H ) sl ) s P2 _3) salar=0
ty ox ou oA

=ty

finally:
T
[ 2(20
ox ox
(7.81)

Since variations é‘x(t ; ), ox, ou and oA are random and interdependent, one-order

T

variation of augmented performance index functional J, is zero, the necessary condition

that equation(7.57) can gain extreme is
1) Positive equation
. aH(x, u, A, t)

State equation: x = 7.81
q PY) (7.81)
Adjoining equation: /1 =— 8H(x, ;l’ 2 t) (7.82)
X
2) Control equation: OH (x, g’ A 1) =0 (7.83)
u
3) Boundary condition: x(t0 ) =x,, M lx(t f) =0 (7.84)
T
4) Transverse Condition: i(tf): {ag(x) T (8]\;1(36)) u} (7.85)
‘ X X

1=t
Example7.8 A given state equation is as follows

a()=x,(t),  x2()=—x,(0)+ult)

Initial condition is

Final constraint condition is
x,(3)+4x,(3)=16
Please find optimal control lawu(¢) which make the following performance index is

minimum.
1 ) 1 1
J:E[x1(3)—4] +5[x2(3)—2] +Ef0u2(t)dt

Solution:
This problem belongs to the optimal control problem of case2. Here, variation method

could be utilized to solve optimal solution of given problem for control variable u(t) is

not constrained. Similarly, constructing Hamilton function is

H :%uz(t)+ A Xy = Ay X, + AU
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0=~ [%()-4T +[x.5)-2F

M =x,(3)+4x,(3)-16=0

Confirm relative equations in the following:

L] ° x
State equation: x=||= oH = [ : }
x,| 04 [—x+u
. . © | H [ 2
Adjoining equation: A== _oH _ [ 2 }
s ox | -4
: H
Control equation: o _ u+1,=0
ou
Hence, solve above equations and we can gain their solutions:
A, =C, cost+C,sint A, ==C;sint +C, cost
. : C, . C,
u=C;sint—-C,cost, xl(t)= C,cost+C; smt—7t51nt—7tcost
xz(t)z— Q+C4—Qt sint + S—Q—&t cost
2 2 2 2

From initial condition x,(0)=0 and x,(0)=0, we can acquire:

C
C,=0, C,- 71 =0
From final condition, the following expressions are gained:

x1(3)= C,cos3+C; sin3—%C2 sin3—%C1 cos3

x2(3)=—(%C2 +C, —%CI)sin3+(C5 —%—%czjcow

In terms of transverse condition, we can know

o | 205 2

ox, (t) ox, (t)

t:tf =3

namely, A4,(3)=x,(3)-4+v=C, cos3+C,sin3

Ll )| 2 ol

ox,(1)  ox,(¢)

namely, 4,(3)=x,(3)-2+4v=-C,sin3+C,cos3

t=t; =3

Polynomials x,(3) and x,(3) are replaced into above equations, and then we can get

—SC§S3C1—Ss;n3C2+C4cos3+Cssin3+U=4

(%sin3+%cos3j€l —[%+%COS3]C2 -C,sin3+C,cos3+4v=2
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Constraint equation from final constraint condition M = x,(3)+4x,(3)-16=0 is
(6sin3—3.5¢083)C, —(6.cos3+3.5sin3)C, +(cos3—4sin3)C, +(4cos3+sin3)C, =16
Hence, the following equation group could be formed which unknown variables are

respectively C,, C,, C,, C; and v.

C
C, =0, C5—7‘=0
—50(2)83C1—Ssm3C2+C4cos3+C5 sin3+v=4

. 1 1 .
(%sm3+acos3JC1 —(Ent%cos?)jcz -C,sin3+C,cos3+4v=2

(6sin3—3.5¢c0s3)C, —(6cos3+3.55in3)C, +(cos3—4sin3)C, +(4cos3+sin3)C, =16
Combine above equation group, and we can get the above solutions:
C =1945, (C,=208, (C,=0, C,=09725, v=-0.2172

Hence, optimal control law acquired is
u’(t)=1.945sin¢—2.08cost

Case3, final time¢ s is free and final state x(t f) 1S constrained.

The augmented functional J,, is

Ja=e[x(tf)]+uTM[x(tf)]+j;’{L(x, u, t)+,1{f(x, u, t)—;c}}dt

= 0lx(e, ]+ 0" M[x(e, )|+ I;[H(x, u, t, z)-fi}h

In equation(7.86), besides that time variable, is free, others are completely the same

(7.86)

as that in equation(7.80). The necessary condition of optimal control problem is as follows:
1) Positive equation
OH (x, u, A, t)

State equation: ‘= 7.87
q X Y] (7.87)
Adjoining equation: i:_aH(x, g’ A, t) (7.88)
X
2) Control equation: GH(X’ g’ A, t)=0 (7.89)
u
3) Boundary condition:  x(¢,)=x,, M [x(tf), th:O (7.90)
4) Transverse Condition:
26(x) 8M(x)]T
A, )= + v 7.91
(j ) l: ox ( ox (7.91)
t=t;
[H(x, u, A, t) %, Tﬁﬁ} =0 (7.92)
ot o .,
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Example7.9 A given state equation is as follows

x(6)=ul?)
Initial condition is x(0)= x, ; Final constraint condition is x(tf): C,(Const) .Please find

optimal control law«"(¢) which make the following performance index is minimum.,

o2
J:I/ (xz +Xx Jdt
0
Solution:

The method of solving optimal control problem is similar to previous given method.

Here, we also employed variation method to solve this example. Constructing Hamilton
function is the following:

o2
H(x, u, A, t):x2+x +Au=x"+u’+u

olx()]=0,  Mlxle,) ¢, |=0

State equation:

* OH
X=—=u
oA
Adjoining equation:
i = & =-2x
ox
Control equation:
" =2u+A=0
ou

Combine control equation and adjoining equation to gain the following equation:

X=U
Above equation is replaced into state equation, and then we can know:

u=u
The solution of above second-order differential equation is

ult)=Ce' +Cye
Then,

x(t)=Ce' —Cye”, A=-2Ce -2C,e”
In terms of original condition and final constraint condition, we can get

C, —C,=x,,

t —t
Ce’ —C,e ' =C,
The solution of above equation group is

—t
C —xe "’
_SomNe

C =

t
_ S
C. - C,—x,e
1 —t; > 2 ty —t
e’ —e e’ —e

Hence, optimal control law () and optimal state equation x”(¢) are as follows:
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. C,—xe " C,—x,e" . C,—xe "’ C, —xe"
_L“oT% ' 0 %o -t _ Yo% t 0~ %o -t
u (t)_ ty —, e+ ty ~t; € X (t)_ L ’ e — ty ~t; e
e’ —e - e’ —e e’ —e e’ —e

7.5 Pontryagin’s Minimum Principle

In no constraint control, control law u(t) is usually limited by any condition. However,
in practice, control law u(t) is always constrained by a certain objective condition. The
control problem which control law u(t) is limited is usually called to optimal control

problem with constraint. Minimum principle will be introduced and employed to solve such
optimal control problem in this section.

Minimum principle was put forward by Soviet expert Pontryagin in 1956. It was
deduced from variation method; hence its conclusions are similar to the results of
variation.However, there needs not to be Hamilton function for getting minimum,

minimum principle may be widely applied into practice.

7.5.1 Minimum principle of continuous system

We postulate that state equation of system is as follows

x=fIxe), ule) o, x(t)=x, (7.93)
In equation(7.93), xeR", ueQeR”, Q is closed set of boundary. Inequality

constraint is
Glx(t), ult), t]=0 (7.94)
In equation(7.94), G is m -dimension continuously differential vector function, m< p .
System from original state x, to final state x(tf) requires that final state needs to satisfy
the equality constraint:
Mlx(e, ) ¢, ]=0 (7.95)
Here,, M is ¢ -dimension continuously differential vector function, ¢ <n . Performance

index function is as follows:
J=0lx(t,) ¢ ]+ J':’ Lix(e), ulr), e (7.96)

Optimal control is to find the optimally permissible control law u(t) to make objective

functional J have minimum.
In order to convert above inequality constraint to equality constraint, the following
two variables are introduced:

1) Introduce a r-dimension control variable a)(t), and order,

olt)=ult), o(t,)=0 (7.97)
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Though u(t) does not continue, @(¢) is continuous. If u(z) is segmented and
continuous, (¢) is a smoothly continuous function.

2) Introduce another /-dimension variable z(¢), and order
. 2
0] =cblh ) . sla)=0 (7.98)

2
In spite of that z(t) is positive or negative, [z(t)} is eternally non-negative. Hence,

it could satisfy the non-negative requirement. Through above transformation, inequality
optimal problem could be converted into equality optimal problem. Then we introduces
multipliers 4 and y by Lagrange multiplier method, above optimal problem will be
further converted into confirm the extreme problem of augmented performance functional
J,.

a

Ja:6’[x(tf), tf]+UTM[x(tf), tf]

R e R B e C O R

(7.99)
:H[X(tfl tf]+UTM[x(tf)’ tf]
L] L] L] L] 2
+ ;’ {H[x, o, A, t}—f x+FT{G(x, o, tj—(zj }}d}f
Here, Hamilton functionH(x, a.o, A, tj is defined as follows:
H(x, af W, tj:L(x, o, tjmf f[x, o, tj (7.100)

In order to simplify above problem, Lagrange scalar functiong is defined as follows:

L] L] L) L] L) L) L] 2
¢(x, x, o, z, A, T, t]:H(x, o, A, tj—lTx+l“T{G(x, w, t]—(zj:l

(7.101)

Then, augmented performance functional J, could be written into
I, =0, ) ¢ Jrommx,) o]+ f’cb(x, x, o z A T, tjdt (7.102)

One-order variation of augmented performance functional J, is exerted and then

gained:
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a, = 0+22, TGM} St + (86’} M ébc(tj)
L ot ot |,_, Ox Ox p

l:/

* T T L] T L]
[ 83) scr| 22 534 22| s aq’ 5z \dt
"\ O ox dw oz

is optimally final time. The backward three terms in above integrated term are

(7.103)

Here, ¢ ’

partially integrated respectively, and the following relationship is utilized:

acle, )= e, )+ x(e, Jor, (7.104)

Then we can acquire

T
T T
9, {@_@ [@}%aﬂ} 5,_,{%(%] 62] )
ax (32‘ at " ﬁx ax ax )

/ =ty

T T T T
+ [aif] 5a)+[aif] gl +[ (aip—iai_)} 5w—{iaqf] S0 (d a@] & \dt
oo oz R U a5z

t=tf

(7.105)
According to the necessary condition of functional extreme, the following should be

found:
o, =0 (7.106)

In equation(7.105), variations ot I3 5x(t;. ), ox, oOm, oz arebothrandom and
independent, hence the necessary condition that augmented performance functional J, gets

extreme is the following:

. T
[q)(xj (aq.)}aa UT%} =0 (7.107a)
Ox Ot Ot -
B T
% ,(21) 62] o 7.1075)
_8)( 5t ax =,
i‘f} s (51.’} ~0 (7.107¢)
ow 1=t oz 1=ty
82—182 =0 (7.107d)
6x df ax
400 _, 400 _, (7.107¢)
dt dw dt 0z

From equation(7.101), gain
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T
oo _om (eGY [ o
ox Ox Ox

Above is substituted into equation(7.107d) and then we can acquire:

T
_ﬁ:aﬂ+[aﬁj r (7.108)
dt  Ox ox
Namely,
T
G-9A_ _oH G_G] r (7.108b)
dt Ox Ox
If there is no state variable x in inequality constraint function G ,
Glu(t), t]=0
. . . oG
we can get the following expression from equation(7.108b) for — =0
el (7.109)
ox
. . oD
From equation(7.107a) and equation(7.107b) and —-= -4, we can calculate the
ox
valued and H when r=1,:
oo (emY |
Mt )=|—+|— | v 7.110
ARESCIR a0
=t
. 06 ;oM |
Hit, )=|-——-0v — 7.111
(1) { o o ], (7.111)

When system state under optimal control u(¢) is transformed along optimal
trajectory x*(t), the asterisk(*) of optimal time t; can be neglected from equation(7.110)

and equation(7.111). And then we can get transverse condition:

z(zf)zlae +(8Mjru} (7.112)

o o
t=t,
[H(x, u, A, t)+%+vr%} =0 (7.113)
ot ot .,

. o ) )
Expression(7.107e) demonstrates that derlvatlvesa—. and 8_ are constant along
ow Oz

optimal trajectory line. From equation(7.107c), it is known that these constants are zero;
hence optimal trajectory curve is

o _®_, (7.114)

bw 0z
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Since Lagrange function® includes variables x, @ and z,ifvariables x, ®

E *
. .

and z in the extreme curve could be respectively expressed by optimal variables x , @

*
.

and z , equation(7.114) can be expressed as follows:

w_®_y (7.115)

bw 0z

Above content is the necessary condition that performance index functional J, gets

extreme. Besides above necessary conditions, we need to confirm its sufficient condition:

Weierstrass function is non-negative function along optimal trajectory curve, namely:

E:d)(x*, x, o, z, A, T, tj—d)[x*, x, o, z, A, T, tj

=®(x*, X o z X T, tj (7.116)

= (x*, c:), A, tj—H(x*, c:), A, tJZO

Expressions (t)=u(t), o (¢)=u"(t) is replaced into above expression and then gain:

Hx, u', X, )<HE, u X, 1) (7.117)
. . . . . oD .
Lagrange function expression® is substituted into —- =0, and gain:
0w
T
8H+[6—G] =0 (7.118)
dowo \ow

If the expression @(z)=u(t) is noted, the following expression can be gained:

T
aﬂ{a—G] =0 (7.119)
ou ou

After we summarize above deduction, the following famous minimum principle can
be achieved.

Principle of the Minimum Assume the state equation of system is as follows:

x= (), ult) f,  x()=x (7.120)

Control u(t) is a segmented and continuous function with the first discontinuity point,
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which belongs to the p -dimension boundary setQ2 and furthermore satisty the following

inequality:
Glx(t), ult), t]=0 (7.121)
In the case of unknown final time7,, system state x(t) satisfy the boundary condition:
Mlx(e, ) ¢, ]=0 (7.122)

Furthermore system state could be transformed from original state x(¢,) to final state x(tf)

and make the following performance index functional have minimum.
J=0lx(t,) ¢ ]+ [ Lixe,) u(e), (7.123)
Then optimal control u*(t), optimal trajectory x*(t) and optimal adjoining vector

2'(¢) have to satisfy the following conditions:

Assume that Hamilton function is the following:

H(x, u, A, t)=L(x, u, t)+2 f(x, u, t) (7.124)
1) Satisfy canonical equation along optimal trajectory curve x" (t)
vt (7.125)
oA
T
lz—a—H—(a—GJ r (7.126)
ox Ox

Here, signT" is Lagrange multiplier vector which is not related to timez and which
dimension is the same as that of inequality constraint function G . If inequality constraint

function G does not include state variable x , then we have

Glu(t), t]>0 (7.127)
)
A== (7.128)

2) Transverse condition and boundary condition

1(@.){89{8Mjru} (7.129)

o ox
t:t/
T
{H(x, u, A, z)+@+(aﬂ] u} =0 (7.130)
o\ o
t=t,
xt,)=x,  Mlxle,) ¢,]=0 (7.131)

3) In optimal trajectory x° (t), the Lagrange function H corresponding to optimal

control u°(¢) can get absolute minimum, namely:

Hix', u', A, t)=minH(', u, 1, t) (7.132)

ueQ

Or written into
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H(x', o', X, t)<minH(x", u, X, 1) (7.133)

ueQ
Furthermore, the following equation is always found along optimal trajectory curve x (t):
T
on = _[8_Gj r (7.134)
ou ou

Above minimum principle is also called to maximum principle for some engineering
problem requires that performance indexes is maximum. Then, so long as the sign L in
Hamilton function H is changed into —Z and adjoining vector 4 changes its sign and
furthermore Hamilton function /' is maximum, minimum principle can become maximum
principle.

Example7.10 A given state equation is as follows

X=x-u, x(O)zS
: .. 1
Control constraint condition: 5 <u<l.

Please find optimal control law u(t) which makes the following performance index is
minimum.
. 1
minJ = jo (x +u)dt

Solution: This is a permissible control problem which final state is free.
1) Construct Hamilton function
From equation(7.124), the Hamilton function H could be written out:

H=L+A f=(x+u)+A(x—u)
Obviously, the Hamilton function is linear function of control variableu . Derivative

o" =1-A isnot related to control variablex . In terms of minimum principle, finding

ou
minimum of Hamilton function H is equivalent to finding the minimum of functional J ;

this requires that the expression (1—u) is minimum.
) : ) 1
Given constraint of control variableu : E <u<l.

Hence, when A > 1, the upper bound of control variableu: u” =1;

when A <1, the lower bound of control variableu : u" = %

2) Find adjoining vector /1(t) to confirm the converting point.

From co-state equation(7.128), we can know:

A=y
Ox

Namely, ﬂl+ A=-1
The solution of above differential equation is: A(z)=—1+Ce™.
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When ¢, =1, ﬂ(tf): /1(1): 0, C =e; hence, l(t): e —1.
Ensure the converting point:

Weorder A =1, and then can get: ¢t=1-1n2~0.307.

When A>1(£<0.307), u =1.

When A<1(¢>0.307), u =%.

3) Acquire optimal state trajectory curve x~ (t)

Given system state equation: x=x—u

The solution of above state equation is: x=u+Ce".
When 0<¢<0.307, u" =1;hence x=1+ C,e" .On consider x(0)= 5, we can get the

optimal state trajectory curve: x'(f)=1+4e".
1 1
When 0.307<¢<1, u = 5; hence x= E+ C,e'. For first segment value of system

state x(0.307) = 6.438 s the original value of second segment of state curve, we can
achieve the optimal state trajectory curve: x*(t) =4.368¢' +0.5.

4) Confirm minimum functional J~ = J (u)

0.30
0

J = [ (erudr= " (u+ e+ [ (x+0.5)de

= [ (ae +2)ir+ [ (a368¢ +1)dr =8.684

7.5.2 Minimum principle of discrete system

The method of finding the optimal control in discrete system is similar to that in
continuous system, which corresponding relationship is provided in table7.2.

Example7.11 A given state equation of discrete system is as follows
1 0.1 0
k+1)= k)+ k
)| ] o)

Control boundary condition is as follows:

O[O el

Please find optimal control sequence u"(k) and optimal state sequence x (k) which
make the following performance index is minimum.
J= o.osiuz(k)
k=0
Solution:
1) Construct Hamilton function H
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Table7.2 Comparing table of Minimum principle between discrete and continuous systems

Minimum principle of continuous

system

Minimum principle of discrete system

System

x=fle) ule), 1]

x(to) =%

x(k+1)= flx(k). ulk). ]
x(O):xo, k=0,1,--- N

Performance index

J=0x(t,) 1]

+ j: Lix(e), u(r), jt

Extreme problem

Find optimal control u"(¢)

which makes functional J have

minimum.

Find optimal control
u'(k), k=012---N—1 which

makes functional J have minimum.

Method features

Cite adjoining vector l(t)

Cite adjoining vector
sequence /1(k), k=0,12,---N

Hamilton function H (x, u, A, t) H (k) = L[x(k ), u(k ), k ]
=Lx, w, )+ f(x, u, )| + A (k+1)f[x(k), u(k), k]
k=012---N-1
Canonical equation i OH ’ __OH x( s 1) _ oH (k)
oA ox oAk +1)
Alk) = oH (k)
ox(k)
k=0,1,--N-1
..Extreme | aﬁzo GH(/C), k=012-N-1
condition( unconstraint ou ou (k)
control )
Extreme

condition( constraint
control )

Hlx'(k), u'(k), X(k+1), k=
min Hx (k) u(k), 2'(k+1), ]
k=0,2,N-1

Transverse condition
(final state is free and

final time is given)

ﬂ’(tf):

;
When thfl th:O,
/l(tf):o

ox\t

00
_8x(N)
When 6[x(N), N]=0, A(N)=0

A(N)

H(k)=Lx(k), u(k), k]+A"(k+1)f[x(k), ul(k), k]
=0.05u” (k)+ A" (k +1)[ Ax(k )+ Bu(k)|

Adjoining equation is as follows:
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Control equation is
oH (k)
ou(k)
Hence, control law expressionu(k) can be achieved:
u(k)=-10B" 47" A(k)=[0.1 —1]A(k)
When k=0, A(0)=4"A(1)
x(1)= Ax(0)+ Bu(0)= 4x(0)-10BB" A" 2(0)= 4x(0)-10BB" 1(0)
1

oo anf®

=0.1u(k)+ B Ak +1)=0

I—I ||

When k=1, A(l)=A4"4(2)
x(2)= Ax (1)+Bu(l) Ax(1)-10BB" 47" A(1)
2x(0)-104BB" 2(1)-104BB" A" A(1)

=4 x
0 0.01 0 0
[} 0 01} { 0.01 Ol}l(l)
[ } [ 001} (1):{ 1-0.014,(1) }
0.01 0.014,(1)=0.24,(1)
Boundary condition is the following from given information in this example:

@)L

1-0.014(1)=0,  0.014(1)-0.24,(1)=0
The solution of above equation group is
4,(1)=2000, ,(1)=100

2(0)= A7 A(1)= [011 ﬂﬁ%%o}{zs%%o}

W[ Ho o] ]

u(0)=[0.1 —1]2(0)=-100
u(l)=[0.1 —1]a(1)=100

Relative results are listed as follows:

O oo -l ol
A(O):FOOO} 1(1):{2000}, u(0)=-100, u(1)=100

Then we can get

Hence,

300 100
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7.6 Bang-bang Control(Switching Control)

It’s very convenient to utilize minimum principle to solve optimal control; however
it’s very difficult to give out specific control law u*(t) In the following paragraphs, a kind

of special case will be discussed. In this case, all components of control vector can get the
boundary value of control field; and furthermore they could be continuously switched from
one boundary value to another boundary value; and then a strongest control will be formed
and constructed. Such control is called to switch control. If such control is simulated and
visualized, such control is also called to Bang-bang control. Time optimization is a classical
example of Bang-bang control. For the performance indexes of such control is very simple
and studied earlier, relative research results is very abundant and prolific.
For non-linear system, system state equation is as follows:

{x=f[X(t), 6l () 0.135)
x(to ) =X
In equation(7.135), a, <u, <b, . Find the optimal control law u(t) to make the following

performance index function have minimum.
J=0xle, ) o ]+ [ olele) e nT[xle) ehulo)ar (7.136)

Above optimal problem has the following features:

(1) given state equation is nonlinear for system state vector x(t) in equation(7.135);
but for control vector u(r) shows linear relationship. Such system is called to nonlinear
radiation system.

(2) the relationship between aim function and control variable u(t) in equation
(7.136). For the derivative of Hamilton function to input control variable u(t) causes that
there is no control variable u(t) in the derivative equation, the relationship among control
law u(t) , system state x() and adjoining vector A(f) can not be gotten from coupling
equation.

(3) Control lawu(¢) is limited.

In order to solve such optimal control problem, now let’s firstly define Hamilton

function:

H[x(e), ule) o) d=glx(e). e+ h"[x(e). dhule)+ 2@ f1x() o]+ Glxle). ehe(0))

(7.136)

Since Hamilton function A is linear for control law u(t) , minimum requirement of

Hamilton function to control lawu(¢) is as follows:

a, TIe), A+ A (OGx(), 6]} >0
”f‘{b,. W), 7 (610 L <o (7.137)
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Obviously, control law u(t) linearly appears in system and performance indexes. If

each component of control vector is boundary, such control is Bang-bang control.

Only when the following expression is found
R [x(t), ]+ A (0)G[x(t), t]=0 (7.138)
Hamilton function will not be the function of control law u(¢). And it will not have
minimum for control law u(z).

For Bang-bang control problem, there are the following state equation and adjoining
equation:
State equation:
.o

I flx(), t]+Gx(e), tulr) (7.139)

Adjoining equation:

2 2f _oolxe) d] an"lxe) o] oy, ") o], alGlxe) eh(e))
—ale) =T = SR EEE () SR () + ~ A(t)

(7.140)
In equation(7.140), control law u(t) is decided by equation(7.137).

Above state equation, adjoining equation and boundary condition constitute two
boundary value problem together; this is a problem solved difficultly. Here, we only
consider a kind of special case namely shortest time problem.

Assume that the state equation of controllable linear time-constant control system is as
follows:

x(¢)= Ax(t)+ Bu(r) (7.140)

State constraint condition:  x(z,)= x,, x(t f): 0, final time7, is not certain.

Performance index function:

minJ = [ dr (7.141)
u 0

Control constraint condition:

(1) <1 =127 (7.142)

Search optimal controlu(¢) to make that system state can be transformed in shortest
period from original state x(to) to original point x(tf)z 0.

Here, H[x(t), u(t), t] =0 and L[x(t), u(t), t] =1; hence Hamilton function is

Hx(t), ult), A, t]=1+2"[dx(¢)+ But)]|=1+x"A"2+u"B"2  (7.143)

In order to make that Hamilton function H is globally minimum, it’s known that
optimal control is as follows:

u'(t)=—-SGN|B" A(¢)], or, u(t)=—sgn|[B"A(t)}, i=12,-.r (7.144)

Here, sgn is sign function which is defined as
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+1 a>0

sgna =<0 a=0 (7.145)
-1 a<0

When «a is vector, sign function is expressed by SGN.

Canonical equation group:

a9 4, (7.146a)
ox
;(t)ﬁa_;’:Ax(t)wu(t) (7.146b)
Solve and gain:
A(t)=e""2(0) (7.147)

Here, A(0)=4,, it is a non-zero vector. Otherwise, there will be a wrong result.

Equation(7.147) is replaced into equation(7.144), and then achieve the following

equation:
u'(£)=-SGN|B"e "2, | (7.148)
Apparently, optimal control of time is switch control (Bang-bang control). Optimal

control of time requires that control variable only gets boundary value(maximum value) but

have opposite sign with adjoining vector /1(t).
Now let’s discuss the uniquity of time optimal control and switch degree.
Theorem For linear time-constant systemz (A, B, C ) , if there is time optimal
control u"(¢), such control u,(¢), i=12,---,r isunique.

Demonstration Here we employ proof of contradiction to prove the theorem.

Assume that there have two control vectors u, and wu,, u, #u,; but they can be

transformed in the shortest time from original state x(t,) to original point x(tf).

In terms of minimum principle, u, and u, can both make that Hamilton H is

globally minimum; they are that one is greater, another is lower, or they are equal. Now

assume that u, can make H be less. From equation(7.143), we can gain:
1+ e [Ax(t)+ Bu, (£)| < 1+ AL e " [Ax(t)+ Bu, (¢)]
Namely,
Abe " Bu,(t)< Ale " Bu,(¢) (7.149)
On the other hand, in the viewpoint of state equation solution, there is

x,(t)=ex(0)+ J.Ot/ e Bu (r)dr

x,(t)=e"x(0)+ JZ’ e“Bu, (r)dz

When t=t,, system state vectors x, (t) and x,(¢) are both converted into original
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point; namely, Xx, (t ; ) =X, (tf): 0. Then we have

J.Ot/ eA(t”*T)Bu1 (r)dr = Jqf el 7T)Bu2 (r)dr

0
For (em” )_I =e¢ " above equation can be simplified into
J.(:[ e Bu,(r)dr = J(:/ e Bu,(r)dt
After variable is substituted, we can gain:
J.Ot’ e Bu,(t)dt = J.Ot/ e Bu, (¢ )dt
Adjoining vector value 4, is multiplied into the both sides of above equation.
[ 2 Bu,(e)de = [ 25" Bu, (o) (7.150)

Inequality(7.149) is the condition of ensuring that Hamilton function H is minimum,
and equation(7.150) is the condition of requiring that final state is zero. For these two
equations have to been satisfied, there is

Abe " Bu,(t)= Abe " Bu,(t) (7.151)
In the case of that given systemZ(A, B, C ) is controllable, only possible case is
as follows:
u,(t)=u,(t) (7.152)
Above equation(7.152) demonstrates that control vector u(t) is unique. Above
theorem has been proved.

Theorem For linear time-constant systemz (A, B, C ) , if there is time optimal
control u*(t) which satisfies |”1| <1, i=12,---,r,and if all eigenvalues of system

matrix A are both real, each control ui(t), i=12,---,r is Bang-bang control, and

furthermore the most degree between two boundary values is n—1.
If all eigenvalues of linear time-constant system is non-positive real, control law u(¢)

is permissible control; there must have optimal control of time.

Example7.12 A given state equation of linear time-constant system is as follows
OB
xa2(t)=ult)
Control constraint condition is as follows:
|u(t) <1
Please find optimal control u"(t) which makes system be transformed from original

state x(O) to original point.

Solution:

From the given information of this example, we can write out performance index
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functional J :
J= IO” dt=t,
Construct Hamilton function H :
H(x, u, A, t)=L+Af=1+1x,+lu
From minimum principle, we can achieve adjoining equation:
5| o) :_8_H:{ 0 }
L@ o Al
Then the solution of above differential equation group is as follows:
o e
At)] |G, -C
The optimal control which make Hamilton function # have minimum is
u"(t)=—sgn[A,(¢)]= —sgn(C, - Cit)
x(t i ): 0
For |u(t)| <1, above optimal control are divided into two cases for discussion:

1) when u(t)=+1,

X1 (t) =X, (t)
w(f)=1
The solution of above differential equation group is as follows:
2
5 (0)=r+2,00). x()="-+x,(0)+x(0)

Eliminate time variable ¢ to gain:

2 2
nf0)=0 g 0)- 20
The optimal trajectory in phase plane can be described as the following expression:
2
x,(t)= _xzz(t) +c

2) when u(t)=-1,

x(1)=x,(¢)
0(f)=-1

The solution of above differential equation group is as follows:

50=1+50), x()= " +x,0k+x(0)

Eliminate time variable ¢ to gain:

-420 -


Malgwi
Highlight
flush left

Malgwi
Highlight
flush left


UNDER PEER REVI EW

Chaper7 Optimal Control

xl(f)=—%(t)+xl(0)+%(o)

The optimal trajectory in phase plane can be described as the following expression:

Above analysis demonstrates that the optimal trajectory of system is two bundles of

parabola shown in figure7.1.

Figure7.1 Optimal trajectory bundle
The two curves through original point is the following:

5()=5 530, x)=0. ule)=1

5 ()= 530 w(0)20, ul)=-1

Two curves of parabola through original point is called to switch curve which equation
may be expressed as:

5(0)=- 50 0)

7.7 Linear Quadratic Optimal Control

If a control system is linear, and if performance functional is the quadratic function
integration of state variable or control variable; such control problem is called to linear
quadratic regulator problem, which is shortened to LQR (Linear Quadratic Regulator,
LQR)problem. Such optimal control problem is very widely applied and an important result
of modern control theory. Control law solved from linear quadratic problem is linear
function of state variable; hence closed-loop optimal control can be realized through state
feedback.

In this section, we firstly discuss linear quadratic functional, then regulator and

follower.
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7.7.1 Linear Quadratic Optimal Control Problem

Assume that linear system is as follows:

x(t)= A(t)x(t)+ B(t)u(t), x(z,)=x, (7.153)
The system state is completely controllable. Among equation(7.153), state vector
x € R"; control vector u € R” ; matrices 4 and B are respectively nxn and nxp

matrices.
Performance index of optimal control is the linear quadratic function of state vector
and control vector, which can be expressed as

7= ol P ), )
+% J/ )= 5, OF Q) ()" ()R e

Among equation(7.154), desired system state x, (t), te lto, th represents desired

(7.154)

state trajectory; weighting matrices P and @ is positive semidefinite matrix; R 1is

positive symmetric matrix.

Above problem is called to linear quadratic optimal control problem.

Linear quadratic performance index in equation(7.154) has the following physical
significance.

The first term represents the requirement of stable error. Weighting matrix P shows
the attention degree on each state error. What we need to note is that stable error is smallest,
not zero. Stable error should accord with the need of practical engineering. Coefticient 0.5
has no any physical and mathematical significance for deductive convenience.

The second term shows total tolerance of that actual state deviates from ideal state in
the whole control course. Weighting matrix 0 demonstrates the attention degree of each

component of state vector. The third term reflects the cost of control, and represents the
total control energy which is consumed in the whole control course.

LQR regulator problem means that control law designed may make system state return
zero state in the proximity to satisfy that quadratic aim function is minimum.

In LQR problem, the specific means of realizing relative control is not pointed out
clearly. Only a controller needs to be designed to make performance indexes reach

minimum.

7.7.2 Finite time state regulator of linear continuous system

The task of state regulator is that system state keeps each components close to
balancing state in the case of no overmuch energy cost when system state deviates from its
stable state. When such problem is studied, original state vector is usually regarded as
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disturbance, and zero state is regarded as balancing state. Then regulator problem is

converted into searching for optimal control law » in the limited time lto, t fJ to make

system be converted from original state to zero state in the proximity. Furthermore,
regulator should make functional / get minimum.

We postulate that the state space of linear time-variant system is depicted as follows:

x(t)= A(e)x(e) + Bleu(e)

y(t)=C(t)x(t) (7.155)
x(to) =X,

In above expression, x, u, y are respectively n, r, m  dimension vectors.

Time-variant matrix A(t) IS nmxn system matrix; matrix B(t) 1S nxr control matrix;

matrix C(¢) is mxn output matrix.

Quadratic performance index functional of equation(7.155) is as follows:
J——x (t, )y Pxle,) j’[ (R (o) (7.156)
Here, weighting matrix £ is positive semidefinite and symmetric constant matrix;

Q(Z) is positive semidefinite matrix. R(t ) is positive and symmetric matrix;each element

in matrices Q(t ) and R(t ) is continuously boundary for time.
Above optimal problem is called to finite time regulator problem. We may employ

minimum principle to solve it. Now let’s construct Hamilton function:
Hlx, u, A, t]:%x(r)rQ(t)x(tﬁ%u(t)TR(t)u(t)+lT(t)[A(t)x(t)+B(t)u(t)] (7.157)

Then we can get the following canonical equation:

;c(t)zg—[::A(t)x(t)JrB(t)u(t) (7.158a)
: oH r
At)= T —Q(t)x(z)— A" (£)A(2) (7.158b)
x
For the control lawu(z) is free, the following minimum condition will be satisfied:
";H R(u(0)+ BE)Y A()=0 (7.159)
u
We can achieve the solution of above equation:
u'(t)=—R"'(t)B" (t)A(r) (7.160)
The second derivative of Hamilton to control law is as follows:
aH =R(t)>0 (7.161)

Hence, performance index functional J should get minimum. Equation(7.160) is

replaced into canonical equation (7.158) and then gain:
x(e)= A(0)x(e)- BER™(0)B" (1)A(¢) (7.162)
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At)=—-0(t)x(t)— 4" (£)Al) (7.163)
Above equations are obviously one-second linear differential equation group.
According to transverse condition which final state is free and which final time is given, its

boundary condition and transverse condition is:
x(t,) = x, (7.164)

z(tf):%:aj;)[éxr(tf)px(tf)}:px(,f) (7.165)

Since final system state x(t f) and final adjoining vector have linear relationship in

above transverse conditions, and furthermore since canonical equation is also linear, we can

postulate that there is possibly the following linear relationship between system state x(t)
and adjoining vector l(t) at any time ¢ e [to, t J:
Ar)=K(t)x(r) (7.166)
Here, coefficient matrix K (t) is undetermined nxn matrix. Equation(7.166) is
differentiated and then we can get:
()= K (e )x(t)+ K (0)x(0) (7.167)
Equation(7.162) and equation(7.166) are both replaced into equation(7.167), achieve:

)= [K(l)-f- K(2)A(r)- K(¢)B(¢)R™'(¢)B” (t)K(t)}x(t) (7.168)
Equation(7.166) is substituted into equation(7.163) and we can know:

A0)=[-0(t)- 47 (K (1)x(o) (7.169)

Order that equation(7.169) is equal to equation(7.168), we can achieve:
A1) [k(m K()A6) K ()B()R" (t)BT(t)K(t)}c(t)= [0()- 47 Ok (k) 7.170)

Above equality is always found for any system state x(t) . Hence, we have the
following equation:
K@)+ K(0)A() - K(O)BOR™ (1B (K ()= —0(t) - A" (K (1) (7.171)
Namely,
K(0)=K(0)BOR™(0)B" (1)K (¢)~ K (0)A() - A" (1)K (c)- 0(¢) (7.172)
Expression(7.172) is called to Riccati matrix differential equation which is a
first-second nonlinear matrix differential equation in nature.

After comparing equation(7.165) with equation(7.166), we easily find that the
boundary condition of equation(7.172) is the following:

Klt,)=P (7.173)
Matrix K (t) which can satisfying equation(7.172) and equation(7.173) should be
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symmetric when ¢ e [to, { J Namely,
K(t)=K"(z) (7.174)

Equation(7.174) is proved as follows:
Equation(7.172) and equation(7.274) are transposed and gain:

o T
K (t)= K" (0)BOR™ ()" (K" (¢) = 4" (0K (6) = K" (1)4(e)- O1)
K'(t,)=P
It is easily known that matrix K(¢) and matrix K”(¢) are both the solution of

equation(7.172) for same boundary condition; hence according to the uniqueness of

solution in equation(7.172), we can easily know:
K'(t)=K(z)
The undetermined matrix K (¢) is symmetric matrix.
After we gain the solution K (t) from above Raccati equation(7.172), the optimal
control law u(t) may be achieved from equation(7.160):
u'(t)=—R7(t)B" (t)K (¢ )x(¢) (7.175)
Equation(7.175) is replaced into equation(7.155), and then we have

x(t)=[4()- BEOR ()BT (DK ()(e),  x(t,)=~x, (7.176)
Obviously, the solution of above linear differential equation is the optimal

solution x"(¢) of system state.

Then, we firstly calculate and confirm the optimal value of performance index

functional J .
Optimal control law u"(¢) and optimal state x'(z) is substituted into performance

index functional, and we can get that the minimum of performance index function is as

follows:
J"=—x"(t,)K (2, )x(t,) (7.177)

Proof

Differentiate expression x”(¢)K(¢)x(t) and then we can get the following expression:

T L]

%[xT(t)K (Ole))=x (K (x(e)+ " (K (O)xle) + 5" (K (0)x(0)

Derivative x from system state equation is replaced into above equation, and K (t)
is also substituted into above equation by Riccati matrix differential equation. And then we

can gain:

% X" Kx)=—x"Ox—u" Ru+[u+R"'B" Kx| Rlu+R"B" Kx|

When u(t) and x(¢) are equal to optimal functions u"(¢) and x"(¢), have
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d
dt

Integrate above equation from ¢, to ¢

xKx] X Qx—u "Ru’

, and multiply them by 0.5,

% { [ KXE :——j [x Ox" +u' Ru]d

Namely

1 l_ 1 t/’[*T * T *L
2x "Kx __EJ;o x Ox +u Ru (dt

Above equation is replaced into equation(7.156), and then gain
J J[ I [x Ox" +u’ "Ru ]dt+;x (tf)Kx*(tf)
1 .r

=—%[x* Kx*] X (tf)Kx*(tf)

Ty

L (t, K (£, )x"(z,)

2
Obviously, at any time, performance functional is

T =T x(0)]= %X*T(t)K(t)x*(t)

When ¢ = i,

Theorem The given state equation of linear time-variant system is as follows:

$(0) = Al)(e)+ BOW(), xle,)=x,

Quadratic performance index functional is the following:
J——x LY P, j (e s (R )i

In this equation, control variableu is not constrained; final time ¢, is definite; and
weighting matrices P and Q are positive semidefinite matrices; matrix R is positive

symmetric matrix; then optimal control lawu"(¢) always exists and is unique, and

furthermore it can be determined by the following formula:
u'(t)==R7'(t)B" (t)K (¢)x(¢)

Optimal system state x*(t) is the solution of the following equation:

=[4()-BOR OB K O(C),  x()=x,

The minimum of performance index functional is

T =2 1K el
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Several points need to be explained on above results:

1) Optimal control law is a linear state feedback, hence it’s very convenient to realize
closed-loop optimal control.

2) If control time period lto, th is definite and if matrix K(z) is time-variable,

optimal control system is linear time-variant control system.

3) K (t) is the solution of nonlinear differential equation; generally it is very difficult
to solve the analytic solution. Hence, numerical solution of matrix K(¢) could be calculated

by computer.

4) We should note that there is no controllable requirement of system in the finite
time state regulator of linear continuous system.

Example7.13 A given state equation of linear time-constant system is as follows

x()= Ax(t)+ But),  x(t,)=x,
Performance index functional is
J= % ' [ O0l)sle)yu” (ORulo)}
Relative matrices are as follows:
ER S S
A= , B= , 0= , R=1
00 1 0 0

Please find optimal control u’(¢).

Solution:
We assume that positive and symmetric matrix is the following:

K(t)= {k”(t ) klz(t)}

b (6) ko)

Above matrix could satisty the following Riccati matrix differential equation:

K(1)==K(0)A(0)- 4" (K () + K()B()R ()8 (0K (1) - ()
ST G T S Tk
ko k»n 21 Az 21 Az 21 A2 21 22

Namely,
{;’m ;’m] =[ K1 —k, +k12k22}
o k| |k thoky, =2k, + ks,
We can get the following linear algebraic equation group:
R
kia =k, +k Ky,

k»n = —2]{12 +k222
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Final boundary condition is K (t 7 ): P =0. We utilize computer to solve above
differential equation and gain the value of matrix K(¢) from t=0 to ¢= t, . Then we can

get optimal solution:

7.7.3 Infinite time-constant State regulator of linear continuous

system

Assume the state equation of linear time-constant system is the following:

x(t)=Ax(e)+Bult) ,  x(t,)=x, (7.178)
In equation(7.178), matrices 4 and B are respectively nxn and nxp constant
matrices.

Postulate that system Z(A, B) is completely controllable, state vector x € R" , and

that control vectoru(f) is not constrained. Quadratic performance index functional is

J= % [ T Oox(e)+u” ()Rul0)Jt (7.179)
Here, weighting matrices Q and R is constant matrix, Q is positive semidefinite ,

and R is positive and symmetric matrix. Control law u(¢) is free. Require that optimal

control u'(¢r) needs to be confirmed to make performance index functional have

minimum.

Comparing with previous state regulator with limited time, indefinite time-constant
regulator has the following characteristics:

1) system is time-constant, and weighting matrix in performance index functional J
1S constant matrix;

2) Final time tends to infinity co. In infinite time time-constant regulator, that the final

time 7, has a tendency toward infinity is to get a constant feedback matrix K .

3) Final weighting matrix P =0 , namely there is no final performance requirement.

This is because final performance will lose the engineering significance when final time ¢,

tends to infinity.

4) Requiring that system is completely controllable is to guarantee the stability of
optimal system. When control area is infinite, system performance index tends possibly to
infinity based on any control if system is not completely controllable. Then the advantages
and disadvantages of control performance will not be compared to ensure the optimal
control of system.
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5) Closed-loop control system is asymptotically stable, namely all characteristic roots
of system matrix [A ~-BR'B'K ] have negative real.
Assume that Lyapunov’s function is the following:
V(x)=x(t) Kxle)
Lyapunov’s function V(x) is positive definite for matrix K is positive definite.

L] T .
V(x)zx Kx+x"K x
Equation(7.176) is replaced into above equation, and then we can achieve:
V(x)=x"(:4- BR'B"K]| Kx+x"K[4- BR'B"K |x
=x"|(4"K + KA~ KBR"B"K)- KBR"'B"K |x
= —x"(0+KBR'B'K)x

For matrix Q0 and matrix R is positive definite, derivative ¥ (x) is negative definite.

Conclusion5) is proved. In practice, if V(x) is not eternally equal to zero, matrix Q0 may
be positive semidefinite.
Theorem Assume linear time-constant system is the following:
x(t): Ax(t)+ Bu(t) \ x(to)z X,

This system is completely controllable, and quadratic performance index functional is
J= % [ Oosle) o (ru(o)i
Here, weighting matrices Q and R 1is constant matrix, Q is positive semidefinite
and symmetric matrix, and R is positive and symmetric matrix. Control law u() is free.
Then optimal control law " (f) always exists and is unique, which is decided by the
following expression:
u"(t)=—R'B"Kx(t) (7.180)
Here, matrix K is nxn positive symmetric constant matrix, it is the unique solution
of the following Riccati matrix algebraic equation:
KA+ A"K-KBR'B'K+0=0 (7.181)

Optimal state x"(¢) is the solution of the following differential equation:

() =[4-BRBTKx(r). x(t,)=~x, (7.182)
The minimum of performance index functional is as follows:
J = %xT(to )Kx(t,) (7.183)

Example7.14 A given state equation of linear time-constant continuous system is as

follows

429 -


Malgwi
Highlight
flush left

Malgwi
Highlight

Malgwi
Highlight
flush left

Malgwi
Highlight
flush left


UNDER PEER REVI EW

Modern Control Theory
Performance index functional is

- 10 1 0
xX= X+ |u
0 0 1
1 e
J:EJO (xl2 +2bx,x, +ax; +u)ilt

Please find optimal control u"(¢) when functional J gets minimum.

Solution: In terms of performance index functional and system state equation,the

following matrices may be known:

Lfo 5|0 15 R
1o ol ) Q_ba’ B

In order to make that matrix Q is positive definite, the following inequality needs to
be always found:
a-b>>0

Judge whether given system is completely controllable.

0 1
rankS, = rank[B  AB|= ranl{l 0} =2

Hence, given system is completely controllable. Optimal control u(t) always exists
for matrix @ and matrix R is positive definite.
. k, k| x(¢
u (t):_RilBTKx(t):_l[O 1] : N 1( ) =—k12x1(t)—k22x2(t)
ki ky | X, (t )
k,, and k,, isthe solution of the following Riccati differential equation:

KA+ A"K-KBR'B'K+0=0
k, Kk, |0 1+0 Ok, k| [k iy 0[0 lk11 k12+1 b|_[o 0
k, k,||0 O |1 Ok, ky| |k, kyl|l k, ky,| |b a| |0 0O

Namely,
—k;+1 k, —kpky,+b| [0 0
[kn ki +b 2k, kD +a } ) {0 0}

Develop and then gain the following algebraic equation group:

—k,+1=0

k,—k,k,+b=0

2k, —k;, +a=0
The solution of above equation group is as follows:

k,=%x1, k,=%J2k,+a, k,=k,k,,—b

After considering positive definite matrix K , we can get:

k,=1, ky,=v2+a, k,=+a+2-b
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1 Va+2

Hence, optimal control #"(¢) can be gained:

(=R B K)o 1][@"’ ﬁ}“ﬂ()ﬁ()

The state equation of closed-loop system is the following:

K{m_b 1 }

System matrix:

e [ (7 L

State equation:

- |0 1
AL
State feedback transfer function of closed-loop system:
1
s’ +sva+2+1

G(s)=C[sE-(4+BK)|'B=

Poles of closed-loop system are as follows:

__«/a+2 +J_«/2—a
B 2

s
1,2
2

(when a<?2)

7.7.4 Output regulator of linear continuous system

In the above sections, we have discussed the design problem of state regulator. The
performance index functional of state regulator requires that weighting square sum of all
states of that system deviates from balancing point is minimum. However, plenty of
optimal control problems in practice do not emphasize all states of system but only have
the requirement on the output of control system. When people utilizes state equation to
describe a physical system, they difficultly give out specific requirement on all system
states; furthermore a lot of system variables don’t have any physical significance possibly.
But people can put forward specific requirement on system output. Hence, it’s very
significant to put forward relative requirement on system output to construct the
performance index functional of optimal control system.

In this section, we will solve output regulator problem of linear continuous system.

1. Finite time output regulator

We postulate that linear time-variant system is as follows:

x(t)= A()x(e)+ B(),  x(t,)=x, (7.184a)
y=C(t)x(t) (7.184b)

The performance index functional for finite time output regulator is the following:
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T =2 el e [ [ 0000+ (ROl (7.185)

In above equation, control law u(¢) is not limited and final time t, 1is given; time-variant

matrices A(t), B(t), C (t) are continuous boundary function on time variable; weighting
matrix P is positive semidefinite and symmetric constant matrix; weighting matrices Q(t),
R(t) are respectively positive semidefinite and positive definite symmetric matrices which
each element is continuously boundary on time variable.

Please find optimal control u”(¢) make that performance index functional J has

minimum.
In order to solve such problem, we should firstly transform it into equivalent problem
of state regulator; and then we may utilize the previous result of state regulator to solve

optimal control law " (¢).

Expression in equation(7.184b) is replaced into equation(7.185), and then we achieve:
1 7 Lol 7 T
7= 207 ) L B0t ) Rt
= L)l o) L] e o)) o (Rl

Comparing with equation(7.156), we may find that weighting matrices P and Q(t)

(7.185)

have been changed. New weighting matrices are marked as:
P=C"(t,)PClt,),  0()=C"()o()C() (7.186)

Then relative performance index functional J is the following:

J= %xT (, )Tax(tf)% B 0o+ " (OR(lo) (7.187)

After comparing equation(7.187) with equation(7.156), we easily know that if
matrices P and @(t) are positive semidefinite matrix, the method of solving state
regulator may be utilized to solve optimal control u(t) of output regulator.

If matrices P and Q(t) are symmetric matrix, matrices P and Q(z) are also
symmetric.If system is observable, matrix C”(¢) is not zero at ¢ e [to, th. If matrix Q is
positive semidefinite, performance term y” (t)Qy(t) is always greater than or equal to zero,
namely y(t)Qy(t)ZO for all system output C(t)x(z). For system output is completely
observable, each output is formed by unique system state x(t) . Hence we may think that
matrix C”(¢)0C(t) is positive semidefinite. Similarly, we may deduce that matrix
C"(t)PC(¢) is also positive semidefinite.

Then from optimal control of state regulator, we may easily confirm the optimal

controlu”(¢):
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u'(t)=—R"(0)B" (1)K (¢)x(z)
Theorem When and only when linear time-variant system in equation(7.184) is
completely observable, there are uniquely optimal control:
u'(t)=—R7(t)B" (t)K (¢ )x(¢) (7.188)
Here, gain matrix K (¢) is positive definite symmetric matrix, and it is unique solution

of the following Riccati differential equation:

K(0)=—K()A(t)- A" ()K () + K (0)B( )R (£)B" (K (1) - C* (1) )C(e)  (7.189)
Kle; )=t )Pcle, )

Optimal state x(¢) is the solution of the following differential equation:

x(0)=[4l0)- BOR OB OKOR(),  5le,)=x, (7.190)

Optimal performance index functional is as follows:
J = %xr(z‘o K (£, )x(t,) (7.191)

From equation(7.188), we easily find that optimal output regulator is still state
feedback, not output feedback. Optimal control law is the same as that of optimal state
regulator. Their difference is only that they have different Riccati equations. This is because
system observability ensures the state of system output estimation state. However, system
output only shows the linear combination of each state component, and it can not provide
the all information of each state component, but optimal control needs the information of
all state variables. Hence, optimal output regulator is still state feedback, not output
feedback.

2.Infinite time output regulator

Postulate that linear time-constant system is as follows:

x(0)= Ax(0)+ Bult), x(z,)=x, (7.192a)
y= Cx(t) (7.192b)
For infinite time output regulator, quadratic performance index functional yields to
1 o0
=3 [ (O)oy(e)+u” (e)Rulo)r (7.193)

Here, weighting matrices 9 and R are respectively positive semidefinite and

positive definite symmetric matrices. Please find optimal control u"(t) to make that
performance index functional J is minimum.

The deducing course is similar to that in previous theme. We may utilize the result of
infinite time state regulator to gain the result of infinite time output regulator.

Theorem When and only when linear time-constant system in equation(7.192) is

completely controllable and completely observable, there is an uniquely optimal control

u*(t):
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u"(t)=—R"'B"Kx(t) (7.194)
Here, gain matrix K 1is positive definite symmetric matrix, and it is the unique solution of

the following Riccati algebraic equation:
KA+ A"K-KBR'B"K+C"0C =0 (7.195)

Optimal state control x"(¢) is the solution of the following differential equation:

x(e)=[4-BR7B"K (), x(t,)=x, (7.196)

Optimal performance index functional is as follows:
J = %xT(to )Kx(t,) (7.197)

Example7.15 A given state equation of linear time-constant continuous system is as

x{g (l)}ﬁm ()=,

Y=l o)

follows

Output equation:

Performance index functional is
1 ¢
J=> [ (0)+ qu* (1)

Please find optimal control u(¢) when functional / gets minimum.

Solution:
1) Judge whether given system is completely observable and completely controllable.

0 1
rankS_ = rank[B  AB|= ran/{l 0} =2

C 1 0
rankS, = rank =rank =2
CA 0 1

Hence, given system is completely controllable and completely observable.
2) Ascertain the relative matrices in Riccati algebraic equation.

a=|0 M po|? C=[1 0] =1, R=
“lo o) P Tt O o= R=g

3) Acquire gain matrix K from Riccati algebraic equation.

Assume the positive definite symmetric matrix:

K:|:kll k12_

k12 kzz_
1 (1 0

coc=| {1 ol=
0 M[ ] B O}

Gain matrix K can satisfy the following Riccati algebraic equation:
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KA+ A"K —~KBR'B"K+C"QC=0

Namely,
|:k1] k12 :||:O 1:| + |:0 0:||:k1] k12 i| _|:k1] k12 :||:0:|q_1 [0 l{kll k12 :| + |:1 O:| ) O
k12 kzz 0 0 10 ku kzz k12 kzz 1 k12 kzz 0 0
Simplify and merge:
1 1
—gké+1 kll_gkukzz :[0 0}
1 1 0 0
k11 __klzkzz 2k12 __k222
q q

Then, the following algebraic equation can be achieved from above matrix equation:
1

——k;,+1=0
q

1
k11 __k12k22 =0
q

2k, —lka =0
q

The solution of above algebraic equation group is gained as follows:

ky=t24q s kn=+lg, kyn=%y2¢\Jqg (when ¢>0)

Since gain matrix K is positive definite, its solution is ensured as

ky=y24q,  kn=+a, kyn=+2¢:g (when ¢>0)

Hence, gain matrix K can be written out in the following:

K[M &}
Vi ey

4) Respectively give out optimal control law u*(t) and optimal state x*(t) and optimal
performance index functional:

Optimal control law " (t) :

O 1][@ @%M ﬂ _ —gxl ()= Z‘ZI@ ()

Solve the optimal state x"(¢) from state equation:

0 1
sy A {955 ]G

L 9 q
0 1 -
sy w0 x,(¢)
i Lz(tj —g - qu _xz(r)}
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0 1
x'(0)=x(t)expd| g V2avq |(-1,)
q

q
Optimal performance index functional J© from equation(7.197):

* _let ¢ x\¢ W \/g XI(tO)
J —2 (O)Kx(o) 2[1( ) { \/_ m]{xz(l‘o)}

=%[\/ﬁxl +2\/_x1 +\/Wx2 }

7.7.5 Output follower of linear continuous system

Control objective of output follower is to make system output y(t) tightly follow the
desired output z(t) without consuming plenty of control energy.

1. Follower problem of linear time-variant system

Give out a linear time-variant system as follows:

x(6)= A()x(t)+ Bleu() (7.198a)
y(t)=C(t)x(z) (7.198b)
x(ty) = x, (7.198¢)

Postulate that control law u(z) is not constrained. Sign vector z(t) expresses the
desired system output, which has the same dimension as that of actual system output y(t) .
The error vector e(f) is defined as the following:

e(t)=z(t)- y(¢) (7.199)

Or, written into another form:

e(t)=z(¢)- C(t)x(z) (7.200)
Find the optimal controlu"(¢) to make the following performance index functional J

have minimum.

J= %ef(zf )pe(tf)% I 0)ele)+u (R0 (7.201)

Here, weighting matrices Q(t), R(t) are respectively positive semidefinite and

positive definite symmetric matrices; weighting constant matrix P is positive semidefinite
symmetric matrix.

In the following paragraphs, minimum principle will be employed to solve the optimal
problem. And construct Hamilton function as the following form:

Hx, u, 4, t)z%eT(tf)Q(t)e(tf)+%eT(tf)R(t)e(tf)+AT(t)[A(t)x(t)+B(t)u(t)] (7.202)

Then canonical equation is as follows:
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x(0)= 2L = A()x(e)+ B(e)u(t) (7.2032)
oH

He) == == ((COx(0)- 4" (02(0) + €T (=)
= C"(0)Q()z(t)- Cx(0)]- 4" (1)A(r)

The following equation can be gained from minimum condition of Hamilton equation

(7.203b)

for control law is not constrained:

z—Z:R(z‘)u(t)+BT(t)ﬂ(t):0 (7.204a)
Namely,
u'(t)=—R"'(t)B" (t)A(r) (7.204b)

For matrix R(f) is positive definite, above control law u"(t) may make Hamilton
function have minimum.

Boundary condition:
x(to ) =X, (7.205a)

Transverse condition:

ﬁ(tf)%af;){[z(tf)— Cle, e, )V Plele, )= cle, e, )}

- el W, -l o) (7200
==C"(t, JPlele, )= cle, e, )]
= —CT(tf )Pe(tf)

From equation(7.203) and equation(7.204b), we can write out the following canonical

equation:
x(t) _ Ale) ~B(t)R'B"(¢) [ x(¢) . 0 »
L(t)}[—cf(t)Q(t)C(t) _ A7) }[,w)} {CT(t)Q(t)} () (7.206)

The solution of above canonical equation is as follows:

Biiﬂ=expﬂ-cr<3§é>c<z> ‘B(f)fiiff“}“-%)}B(éz){

i “Pﬂ_cw’i&)c@ _B(—If;g(t)}("T)HCT<SQ(t>:Z(T)dT

Canonical equation(7.203) is linear, and /”L(tf), x(tf) and z(tf) among transverse

condition have linear relationship; hence we may postulate the following relationship:
At)=K(t)x(t)-gle) (7.208)
Here, matrix K(¢) is nxn undetermined matrix; and function g(¢) is unknown
function which is related to the desired function z(z).

Equation(7.208) is differentiated and the following expression can be achieved:
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()= K (e )x(t)+ K ()x(0)— 2(¢) (7.200)
Equation(7.204b) and equation(7.208) are replaced into equation(7.203a), and then we

can get:

x(1)= [4(t)- B(e)R™(1)B" (1)K (1)}x(t)+ B(e)R™(1)B" (1 )g () (7.210)
Above equation(7.210) is substituted into equation(7.209); and then the following

expression can be gained:
At)= [k(t)+ K(0)A(r) - K()B()R™ (t)BT(t)K(t)}x(t)+ B(OR™(1)B" (1)g(t)-g(¢) (7.211)

Equation(7.208) is replaced into equation(7.203b); and then there is the following

expression:

Ae)=C" (0)O(0)z(t) - Cle)x(r)] - A" (0] K (e )xle) - g ¢)] (7.200)
=[-c"(o)c(t)- 4T (K Ok()+ ¢ (0()=(0)+ 4 (02 (e)
Comparing equation(7.209) with equation(7.211), we may find that the following
expression should be always found:

K0+ K40 KOBOR 08" (0K p(0)+ BOR 08 ()el0)- 0
- [— CT(1)o(r)C(t)- AT(t)K(t)]x(t)+ CT(1)o(t)z(t)+ 4" (¢)g ()

Equality (7.210) should be always found for any system state x(t) and desired system

(7.210)

output z(t) ; hence the corresponding terms in both sides of above equality(7.210), and then

they yields to the following two equations:
K(1)=—K(0)A(0)+ K()B()R™ (0)B” (1)K (1)~ A" (K (1)~ CT (1)o(r)c(t)  (7.211)
()=[BOR(1)B" (1) 47 (1)]e ()~ C" ()01 )= () (7.212)

Comparing equation(7.208) with equation(7.205b), we find that the boundary
condition of above differential equations can be acquired:

K, )=c(e,)pc(,) (7.213)
glt,)=c"(t,)P=,) (7.214)
We may utilize computer software to solve differential equation from equation(7.211)
to equation(7.212) by inverse time sequence, and then we acquire functions K (t) and g(t).
And they are substituted into equation(7.208) and furthermore equation(7.204b) is utilized.
Finally we can confirm that optimal control lawu’(¢) is as follows:

u'(t)=-R7(0)B" (0] K (0)x(e)- g (1)] (7.215)

Optimal system state may be solved from equation(7.210).And optimal performance

index functional J~ is as follows:

T =2 K- 1))+ o) (7216

-438 -


Malgwi
Highlight

Malgwi
Highlight

Malgwi
Highlight

Malgwi
Highlight

Malgwi
Highlight
space

Malgwi
Highlight

Malgwi
Highlight


UNDER PEER REVI EW

Chaper7 Optimal Control

Here, function ¢(t0) has to satisfy the following differential equation and boundary

condition:
o) =3 B 000:()-¢" BOR OB (e)  (7217)
#le)=="(e, K2, e, ) (7.218)

After comparing equation(7.211), equation(7.213) with equation(7.189), we can easily
find that they are completely same. This shows that there is completely same feedback
structure between feedback structure of optimal follower and feedback structure of optimal
regulator. Optimal follower is not related to desired system output z(t) . By comparing
equation(7.210) with equation(7.190), it is easily seen that characteristic roots of
closed-loop control system between optimal follower closed-loop system and optimal
output regulator are completely equal and that they are not related to the changing law of

desired output z(t) . The difference between them only lies in that an input term is added in
the follower system which is related to function g(t).

2. Follower problem of linear time-invariant system
In above content, we have discussed the follower problem of linear time-variant

system at te[to, th . However, linear time-invariant system is very common and

practical in engineering.

For a controllable and observable system, the state equation can be depicted as

follows:
x(¢)= Ax(t)+ Bu(t) (7.2192)
()= Cle)x() (7.219b)
x(t,)=x, (7.219¢)

Assume that the desired system outputz(¢) is a constant vector, and then error
functione(r) can be expressed as follows:

e(t): z—y(t): Z—Cx(t) (7.220)
Performance index functional J can be depicted as

J=— j[ (¢ )Ru(t)jat (7.221)

Here, matrix Q and matrix R are both positive definite matrices.

When final time 7, is given, the following results by imitating previous results can be

acquired:
u'(t)=—R"'B"[Kx(t)-g(t)] (7.222)
Among equation(7.222), matrix K and function g(t) satisfy the following equation:
~KA+KBR'B'"K-A"K-C"QC=0 (7.223)

- 439 -


Malgwi
Highlight

Malgwi
Highlight

Malgwi
Highlight

Malgwi
Highlight

Malgwi
Highlight

Malgwi
Highlight


UNDER PEER REVI EW

Modern Control Theory

g(t)=(kBR'B" - 4" )g(t)-C"Oz (7.224)
Example7.16 First-order dynamic system is depicted as follows
x(t) = ax(t)+ u(t)
Output equation: y(t) = x(t)
Control lawu(¢) is not constrained. And the desired system output is expressed as

sign z(t); and error expression can be depicted as the following equality:

elt)=2(t)- »(t) = 2(1) - x(¢)

Performance index functional J is
1 1 iy
J= Epe2 (tf )+ 5_[0 [qe2 (t)+ ru’ (t)]dt

Here, p>0, ¢>0, r>0.Please find optimal control u*(t) when functional J

gets minimum.
Solution:

In terms of equation(7.222), we can get the optimal control law u*(t):

. _ 1
u'(r)=—R'B" [Kx(r) - g (1)] = ——~[Kx(r) - (0]
Gain K is the solution of the following Riccati algebraic equation:
K=-aK+1K*<ak—-q, K(t,)=p
r

The solution of above algebraic equation:

E—a—ﬁ
a+,B—r7(a—,8)exp[2,8(t—tf)]
E—a+ﬂ
K(t):r pr
P4 p
1—;(a—ﬂ)exp[zﬁ(t—t,.)]
——a+pf

7

Here, (= a+1
B

In terms of equation(7.212) and equation(7.214), the differential equation and
boundary condition are:

* K¢
£ a-E0el)-gel0. el )= el
Optimal track curve of system is the solution of the following differential equation:
)= =240 )+ ¢l +(0)=,
r r

Example7.17 A given state equation of linear time-constant continuous system is as
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follows

;:[g (ﬂﬁmu ()=,

Performance index functional J is
1 ¢t
I=2 1 {x(0)- ()P +u?(e)

Please find optimal control u'(f) when functional J gets minimum.(assume that

System output equation:

desired system output z is r,namely, z(t)=r)
Solution:

In terms of given information in this example, the following matrices can be known:

a=|0 M po)? c=[1 o], 0=1, R=1, P=0
_OO: _1: - s — 1o — 1 -

According to equation(7.223), the matrix equation can be written out:
—~KA+KBR'B'K-A"K-C"QC=0
Namely,

e ST T 0 e
ki, k,|0 O] |k, ky|1 k, k, 1 Ok, ky,| |O
Simplify and merge above matrix equation; then we can gain:
{ -kl ky —klzkzz} ~ {0 o}
by —kpky, 2k, —k3 | [0 0
Then the following algebraic equation group can be gained from above equation:
1-k2 =0
k,—k,k,, =0
2k, —ky, =0
Consider the characteristic of gain matrix K , we can get the following solution:
by =k =N2, k=1
Hence, gain matrix K may be written out as follows:

V2
K{l fz}

Now let’s find the function g(¢). This function g(¢) can be expressed in terms of
equation(7.224):

g(t)=(KBR'B" - 4" )g(t)-C" 0z
Namely,

- 441 -


Malgwi
Highlight
flush left

Malgwi
Highlight


UNDER PEER REVI EW

Modern Control Theory

so-[7 5[k o[} ik

Simplify and merge, then get:

. 0 1 1
0" o)
Final condition of function g(¢) is: g(t f): 0.
Utilizing integral method is to solve the expression of function g(t).
A ) R ]
glt)= e[_l ﬁ} g(to)+'|-:e[_' ﬁ} [ I}dr

When ¢, =0, above expression is simplified into the following form:

o 1] t 0 1 (o[ —
g(t)=e{l \5} g(O)ijtJ1 \FJ { l}rdf
Hence, optimal control u"(¢) can be gained:

-5 t)-s0l--0 )7 L[ A -2 0.0

1

7.8 Linear Quadratic Sub-optimal Control

In previous sections, state regulator,output regulator and output follower have been
discussed to search relatively optimal control u”(¢) which is realized by the linear
combination of all system state variables x,(¢), x,(¢), -, x,(¢) . However, in actual
engineering,it’s very difficult to acquire all information of system state variables. Then we
utilize system outputs y,(¢), »,(t), ---, »(t) to form the control law u(f) by
combination. That’s to say, system outputs y,(¢), ,(t), ---, y,(t) with lower dimension

are employed to form output feedback system. Then the performance index functional of
such system with no complete information is worse than that of optimal control system.
Such control is rendered to sub-optimal control.
For sub-optimal control, input controlu(t) is expressed through system output:
u(t)=—Ky(z) (7.225)
This equation is output feedback in nature.

Assume the the completely controllable and observable system is given as follows:

x(t) = Ax(r) + Bur) (7.226)
¥(t)=Cx(t)

Performance index functional of sub-optimal control system is as follows:
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1 0
J= EL " (1)0x(e)+ 1" (¢ Ruae e (7.227)
Here, matricesQ and R are positive definite matrices.

The block diagram of such closed-loop control system is shown in figure7.2

Figure7.2 Output feedback block diagram of closed-loop control system
From figure7.2, the state equation of closed-loop control system is gained:

x(t)=[4- BKC]x(t) = 4x(t) (7.228)
Here, matrix A= A—BKC is the state matrix of closed-loop control system in

figure7.2. Then, performance index functional / may be deduced into the following form:
J= % [ B 0x(0)+ 7 (0)rue
1 00
N EJ.O [¥" ()ox(t)+ x" (£)C" K " RKCx (¢t

(7.229)
B %j: ¥ ()0 + " KT RKC |x(t)dt
_ % [ 5 (ox(r)ds

Here, 0=0+C"K'RKC . (7.230)

In this case of figure7.2, the task of design is to ensure the output feedback matrix K
to make performance index functional J in equation(7.230) get minimum.

Lyapunov second method may be utilized to solve such problem. Firstly, all
characteristic roots of closed-loop state matrix A both have negative reals, then
closed-loop system is asymptotically stable. Secondly, utilize the relationship between the
second method of Lyapunov function and quadratic performance index functional J .

For asymptotic system in equation(7.228), we construct Lyapunov function:
V(x)=x"(t)Px(z). (7.230)
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Matrix P is a symmetric matrix with all reals. First-order derivative is exerted into
both sides of equation(7.230); and then we can gain:

. o7 . — — . —
V(x)=x (6)Px(t)+x" ()P x(e)= x" ()4 Px(t)+ x" (¢)PAx(t) = xT(t)(ATP + PA)x(z) (7.2
31)
For asymptotic system, if Lyapunov function V(x) is positive definite, its

derivative /'(x) has to be negative definite; and then order:

A P+PA=—0 . (7.231)
Here, matrix Q is positive definite real symmetric matrix.

Then equation(7.231) can be converted into the following form:
V(x) =—x' (t)éx(t) (7.232)

Hence, function V(x) is negative definite. Comparing equation(7.232) with
equation(7.230), we easily get:

 ()ox(r) = _%[xT(t)px(t)] (7.233)

Hence, an asymptotic system has to satisfy equation(7.231) and equation(7.233), here,
matrices é and P have to be both positive definite and real symmetric matrices.

Equation(7 233) is substituted into equation(7.229), and then we can achieve:
J=— j (1)0x(¢)dt = ——[x Px(c)] = —%xT(oo)Px(oo)+%xT(0)Px(0) (7.234)

Characteristic matrix 4 both has negative reals for all eigenvalue. Hence, there is
limx(¢)=0 (7.235)

t—

Then the following expression is found:
J = %xT (0)Px(0) (7.236)

Comparing equation(7.236) with equation(7.177), they have same form, but their
solution is not different.
Feedback matrix K  can not be directly solved from Lyapunov function in
equation(7.237) because matrices P and K are both unknown.
(4- BKC)P+P(4-BKC)=-0—-C"K"RKC (7.237)
A simple solving method is gradient reducing method. Matrix P may be expressed by
matrix K  from equation(7.237). Then matrix expression P(K ) is replaced into
equation(7.236). And then order
aJ(K)
oK
Then matrix K will be solved from equation(7.238). Here, what needs to be noted is

~0 (7.238)

that the optimal parameters of feedback matrix K  are related to original state
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condition x(0).

Example7.18 A given state equation of linear time-constant continuous system is as

{g _ﬂﬂmu

y()=[1 ol(r)

Performance index functional J is
1 pe 1 0 1 0
J==—| IxX"Ox+u"Ruldt, = , R=
2-[0[ © ]d © {0 1} [0 O}

Assume that system state x,(¢) is not measured, and then output feedback should be

follows

System output equation:

adopted here. Please find feedback matrix £ to make that functional J gets minimum.
Solution:
From equation(7.228), state equation of closed-loop system can be gained:

x=Ax=[A-BKClx = {[g _IJ - Mk[l O]}x - [_Ok _ﬂx

The performance index functional J/ from equation(7.229) can be written out:

J= % 5 ()0x(1)dt = % ["5 (fo+ 7k RKC(o)a

L j:xT(t){sz ﬂx(t)dt

0

According to Lyapunov equation(7.231), we can write out the following equality:

A P+PA=—0

{0 _k}[l’n plz]l_{pn p12}{0 1}:_{1‘”(2 O}
1 =1]p, px Po Pn|—k -1 0 1

Merge and then gain

|: —2kp,, pll_p12_kp22:|=_|:1+k2 0}
Py — P, —kpoy 2(1712 _pzz) 0 1

The following algebraic equation group can be gained from above equality:

Namely,

2kp,, =1+k*
Py~ P —hkpy =0
2(1712 ~Pn ) =-1
All elements in matrix P can be expressed by feedback gain matrix k& as follows:
1+ k+2k>+k° 1+k° 1+k*+k
Pu = 2% P = % pzzzT
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Namely,
l+k+2K°+k°  1+k°
p— Pu P | 2k 2k
= = e 2
P P +k l+k+k
2k 2k

Assume original value of system state: x,(0)=1, x,(0)=0.And then the following

expression from equation(7.236) can be written out:

1+ k+2k*+Kk° 1+ k2

1 2 3
J=1XT(0)Px(O):l[1 0] 2k2 2k X [ }=1+k+2k +k
2 2 1+k l+k+k* |0 Ak
2k 2k
Order

oK 4 dk
Hence, £ =0.5652

OJ(K) 1d|1+k+2k>+k° | 2k +2k> -1
k 4k’

7.9 Optimal Control of Discrete Control System

7.9.1 Basic form of linear discrete system

Consider the following discrete state equation:
(k+1)=flx(k), u(k), K} k=012, N-1
x(to) =X

Here, x(k) is the system state of n dimension state vector at kth time; u(k) is

(7.239)

system control input of » dimension control vector between kth step and (k + l)th step.

Optimal control problem is to ensure optimal control
sequence {u(0), u(1), ---, u(N-1)} to make the following performance index functional
minimum.

N-1
J=gx(N)]+ Y Llx(k) ulk) ] (7.240)

=
1l

0
Here, discrete system state x(N) is assumed to be free. ¢[x(N)] shows the
consuming cost in aim function.

Such problem is the same as previous control problem in nature. Their difference is
that the number of variable increases N times. Namely,

k) x(k) - x, 0 (=12, N)
(k). w (k) ()} (=012, N-1)

Constraining equation(7.239) adds N times, too; hence problem scale also expands.
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Imitating previous idea, expression(7.239) may be written into the following form:
flx(k), u(k), k]-x(k+1)=0 (7.241)
Number of Lagrange undetermined constants adds N times, too.
k) ak) - 2,kK), (k=12,-.N)
Imitating previous methods, we now construct a new function:
N-1
V=gl Y ALlx(k) () K]+ 2 e+ 1) r[xk) (k) K]-x(k+1)]) (7.242)
k=0
Then above minimum problem of equation(7.240) is transformed into finding the
minimum problem of no constrained problem.

In order to conveniently remark relative expressions, we give out the following marks:

L[x(k), u(k)]=L[x(k), u(k), k] (7.243)
Selx(), wlk)]= flx(k), ulk), ] (7.244)
H, =L[x(k), ull)]+ A (k+1)f,[x(k), u(k)] (7.245)

Then equation(7.242) may be simplified into the following form:

N-1
v = glx(N) =27 (N )x(N)+ Hy + > [H, = A7 (k)xe(k)] (7.246)
k=1
After we find the increment of functional V', the following linear master unit can be
gained by neglecting high-order infinitesimal term.
o¢p r OH . oH
AV =Ax"(N) == AN) |+ AT (0) =2 [+ Au” (0) —%
8] sty o0 o] S o] 2
= oH = oH
+> AxT(k E_206) 1+ Au” (k k
3 acte] 5520 S ] S

Necessary condition that functional /' gains minimum is AV =0 . After we consider

(7.247)

that expression x(0)=x, is constant, there is expression Ax(0)=0 . Then minimum

necessary condition can be achieved from equation(7.247) as follows:
OH,
ox(k)

oH,
=0, (k=12,--,N-1
ou(k) ( )

x(k+1)= f[x(k), u(k)] (k=12 N-1) (7.248)
x(O):x0

og[x(V)] _
“atn) W)

=Ak), (k=12,---,N-1)

Namely,
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oLx(k) ugk), k]+[6f[x(k): ugk), k]}rﬂ(kﬂ):g(k), (=12, N—1)

ox(k ox(k
oLlx(k), u(k), k] [olxk) w®) K| 0 o (et v
oulk) { oulk) Mert)=0, (=128 1) (7.249)

x(k+1)= flx(k), ()] k=0,1,2,---,N-1)

The number of equation(7.48) or (7.49) are respectively n(N —1), rN, nN, n and
n . Total number of equation is (2n+7)N+n . Except n variables x(0) , the total
undetermined variable number is (272 +7)N .

In equation(7.248) or (7.249), given ﬂ,(N ) at final time N and x(O) at initial time,

are called to their boundary condition. The problem of solving the boundary of given two

points is called to the problem of two point boundary value.

7.9.2 State regulator of linear discrete system

Assume that the state equation of linear discrete system is the following:

x(k+1)= A(k)x(k)+ B(ku(k), (k=0,1,2,---,N -1)
x(to) =%

In this section, we will respectively discuss two cases: finite time state regulator and

(7.250)

infinite time state regulator.
1.Finite time state regulator
For finite time state regulator, quadratic performance index functional J can be

depicted as follows
J =% %Z[ pe(le)+ 10" (1 )R (k (k)| (7.251)

Here, control sequenceu(k) is not constrained; weighting matrices P and Q are
positive semidefinite matrices; matrix R is positive definite symmetric matrix.
Please find the optimal control sequence u*(k)(k =0,12,---,N— l) to make

performance index functional / minimum.
Above optimal control problem may be solved by minimum principle. And now let’s
firstly construct Hamilton function:

He w2 k)= (00Nl (OR(w) + 2 e+ DA ol )+ B )
k=0,1,2,--,N -1 (7.252)

Then the following canonical equation can be achieved:
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oH (k)
k+1)= = Alk )x(k )+ Bk ulk 7.253
1)~ S A1) (1) (1253
k)= - OH(k) _ Ok )x(k )+ A" (k)A(k +1) (7.254)
ox(k)
Final performance index is
0[x(N), N]= %xT(N)Px(N) (7.255)
Hence, boundary condition and transverse condition are as follows:
x(0)=x, (7.256)
o |1
MN N)Px(N)|= Px(N 7.257
)= 3 () |- o) (7257
If control law u(¢) is not constrained, the following control equation is not satisfied:
0H (k)
R(k k+1)=0 7.258
o)~ RUkk)+ BT () 1) (7.258)
Hence, we can get:
u"(k)=—R"(k)B" (k)A(k +1) (7.259)

In equation(7.257), there is linear relationship between A(N) and x(N); and
furthermore canonical equation is also linear, hence we can postulate that x(k) and /1(k)
exist the following linear relation for any time:

Ak)=K(k)x(k)y k=0,1,2,---,N-1 (7.260)

Here, matrix K (k) is nxn undetermined matrix.

Equation(7.259) and equation(7.260) are replaced into canonical equations(7.114) and
(7.115); and then we can gain:

ke 1)= A6~ BUOR™ ()8 ()2 (k +1)
AR e) - BUOR™ (k)8 (0K &+ Dl +1) (26D
2(6)= K (k)= 006+ A7(0)2(k +1) 260

= Ok (k) + A" (k)K (& +1)x(k +1)
x(k + 1) is eliminated from equation(7.261) and equation(7.262); and relative result is
compared with equation(7.260). Then we may get the following equation:
K (k)x(k)= O(k Jx(k )+ A" (k)A(k +1)
= Q(k)x(k )+ A" (k)K (k +1)x(k +1) (7.263)
= Ok )x(k)+ A" (k)K (k + D|E + BUOR™ (k)& (k + 1) 4(k )x(k)
Equation(7.263) should be found for any system state x(k) ,hence K (k) should

satisty the following equation:
K(k)=0(k)+ A" (k)K (k +1)E + B(t)R™ (k)K (k +1)] " 4(k) (7.264)
Namely,
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K(k)=0(k)+ A" (kK (k +1)+ B()R™ (k)B" (k)|
And furthermore the following final condition has to be satisfied:
K(N)=P (7.266)

Equation(7.265) is rendered to Riccati difference equation. Optimal gain matrix

A(k) (7.265)

sequence K (k) may be confirmed through solving Riccati difference equation according to
inverse time direction. After K (k) is ensured, equation(7.262) can be utilized to gain
Ak +1)= A" (kK (k)- 0(k)x(k) (7.267)
Hence, optimal control law is as follows:
u"(k)=—R"(k)B" (k)4 (kK (k)-Q(k)pe(k), k=0,1,-\N—-1  (7.268)
Equation(7.268) is replaced into equation
x{k+1)={40) - BIOR™ (k)BT (k)4 (kYK (k)= 0k px(k), - (k = 0,12, N =1)
X (to ) =X

Hence, optimal state x*(t) is the solution of linear difference equation(7.269). Optimal

(7.269)

controlu*(k) is unique, which is determined by equation(7.268). Optimal control u*(k)

and optimal state x"(k) are substituted into performance index function, and we can

acquire the minimum of performance index function:
J = %xT(O)K(O)x(O) (7.270)

State regulator block diagram of discrete system is shown in figure7.3.

x(k)

B(k) : -—

u'(k)

Alk)

O O K el —

Figure7.3 State regulator block diagram of discrete system

2.Infinite time state regulator

For infinite-time state regulator (N - oo), performance index functional is as follows:

J = %g [x" (k)0x(k)+ u” (k)Ru(k )] (7.271)

Final time is possibly tendency to infinity, hence we have to require that the final

state x(N ) should tend toward zero state. Otherwise, performance index functional does
not converge. So that performance index functional does not include term x(N ).

When N — o0, Riccati matrix K (k) will become a constant matrix, namely:
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lim K (k)= K (7.272)

k—

Hence Riccati equation may be expressed into the following Riccati equation:
K =A"KA+Q-A"KB(R+B"KB)' B'KA (7.273)
Optimal control law is
u'(k)==R"'B" 47" (K — Q)x(k) (7.274)

Optimal performance index functional yields to
J. = %xT(O)Kx(O) (7.275)

Example7.19 A given state equation of linear discrete system is as follows
x(k+1)=x(k)+u(k), k=012,---,N-1
Initial condition is x(0), control law u(k) is not constrained.

Performance index functional J is
N-1
J=ter () 13 (w)
2 2%

Please find optimal control sequence u*(k)(k =0,1,---,N— 1) to make that performance

index functional J/ gets minimum.
Solution:
In order to demonstrate given conclusions in this section, we assume N =2, namely

only solve a two-step problem. Hence its performance index functional is the following:
1, 1, 1,
J=—cx"2)+—u"(0)+—-u"(l
> (2) 5 0) > (1)

Comparing with equation(7.250) and equation(7.251), we can know that the optimal
control parameters are as follows:
Ak)=1, B(k)=1, P=c, Q=0 and R=1

From equation(7.265), Riccati equation is the following:

§ K(k+1)
K(k)= K (k+1)+1]" ==~
()=l Ge+0)1] K(k+1)+1
Since N=2 and K(2)=P=c;wecansolve K(k)k=0,1) interms of inverse
time:
K(1)= K(2) ¢ K(0)= K(1) c

KQ)+1 c+1’ K1 2c+1
The optimal control can be gained from equation(7.268):
u'(k)=-K(k)x(ky k=0,

1" (0)=—K(0)x(0)= - 2Cc+ 1 x(0)

Optimal state under the optimal controlu"(0) is the following:
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u' (1) ==K (1 (1) = -——=x"(1) = -—=x(0)

- X
c+1 2c+1

Optimal state under the optimal controlu*(l) is the following:

x*(Z):x*(l)+u*(l):zcl +(0)

+1

Optimal performance index functional is

| ) c 5
J =51<(0)x (0)= 2(2C+1)x (0)

7.9.3 Optimal Control Discretization of linear continuous system

Assume that the state equation of continuous system is the following:

x=flx(e). u(). 1] (7.276)
X (to ) =%
Aim functional is the following:

J=6lx(t, ) tf]+J.:fL[x(t), ult), thir (7.277)
Here, le(tf )J is final function; final state x(tf) is free.

Optimal control problem is to find optimal control law u*(t) to make equation(7.277)

minimum under the condition of equation(7.276). We should firstly disperse equation
(7.276) and then find the optimal solution of discrete system.
Firstly, equation(7.276) is transformed into the following discrete form:
x(k+1)=x(k)= f[x(k), u(k), klaz; (k=01,---,N-1) (7.278)
Performance index functional J is the following:

J=§L[x(k), uk), klar+6[x(N)] (7.279)

Here, At is system sampling time.
Then, find optimal solution of discrete system. If we make that system sampling
time Az tends toward zero, discrete system will become a continuous system.

Similarly, we may imitating previously processing method, and then give out the
following definition of Hamilton function:

Hx(k), u(k), Ak), k]=L[x(k), u(k), k]+A"(k+1)f[x(k), u(k), k] (7.280)

The necessary condition of getting minimum is the following:

-452 -


Malgwi
Highlight

Malgwi
Highlight

Malgwi
Highlight


UNDER PEER REVI EW

Chaper7 Optimal Control

OH
Mm = Ak +1)+ Ak)
u
SBre), ulk), ke = x{k +1)-x(k) (7.281)
R
00|x\N)|
éx(N) - A(N)
When Af — 0, equation(7.281) will become the following form:
oH
?(l‘) = —l(t)
oH _
oult)
x=fIx(t), ule), 4 or 2;[((:)) = x(¢) (7.282)

ﬁxitfi -

Here, H(t)=L[x(t), ule), ]+ A" ()f[x(e), ule), ¢].
Equation(7.282) is the necessary condition of optimal solution in equation(7.276) and
equation(7.277).

7.10 Dynamic Programming

In 1950s, dynamic programming was brought forward by America Scholar R.Bellman
for solving optimal control problem of multistage decision process.Dynamic programming
has been widely applied into plenty of technical fields and control engineering.

7.10.1 Optimality principle

In nature, dynamic programming is to solve the optimization of multistage decision
process on the basis of optimality principle. Here, multistage decision process means that a
whole course is divided into plenty of stages and that in each stage the decision needs to be
given to make whole course realize optimization. That’s to say, an optimal policy has the
property that whatever initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state result from the first decision. As used
here, a “decision” is a choice of control at a particular time and the “policy” is the entire
control sequence or function.

Consider the nodes in figure7.4, as states, in general sense. A decision is the choice of
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alternative paths leaving a given node. The goal is to move from A4 node to B node with
minimum cost.

P1 ?R1

P2

o R2

Figure7.4 Route diagram from A node to B node

A cost is associated with each segment of the line graph. Define J, as the cost
betweennode 4 and B node. J,,, isthe cost between node 4 and node PI, etc. For
path4 — Pl - Rl — B, the total costis J =J_, =J o, +J pp; +Jr15 - Optimal path(policy)
is defined by the following expression.
min.J =minlJAPl tpm trss Jumtpon T o Sapa T papy t rags S apa T pago +‘]QZBJ

(7.282)

If initial state is node 4 and if initial decision is to go to node P1, then the path from

node P1 to node B must certainly be selected optimally if the overall path from node 4

tonode B is to be optimum. If final decision is to go to node P2, the path from node P2
tonode B must then be selected optimally.

Let’s postulate g, and g,, be the minimum costs from node P1 and cost P2,

respectively, to mnode B . Then g, = min[JPlQ1 +Joiss JpimtJrp| and

gpy = minlJ p208 Y 008> Ipars tJra BJ. The principle of optimality allows equation(7.282)
be written as
g :min[JAPl +8p> Jup +gp2] (7.283)

In equation(7.283), the key feature is that the quantity be minimized consists of two
parts:

(1) The part directly attributable to the current decision, such as J,,, and J,,,.

(2) The part representing the minimum value of all future costs, starting with the state
which results from the first decision.

The principle of optimality replaces a choice between all alternatives (Eq.(7.282)) by a
sequence of decisions between fewer alternatives(find g, , g,, and then g, from
Equation(7.283)). Dynamic programming allows us to concentrate on a sequence of current
decisions rather than being concerned about all decisions simultaneously.

Division of cost into the two parts, current and future, is typically, but these parts do

454 -


Malgwi
Highlight
:

Malgwi
Highlight

Malgwi
Highlight
flush left

Malgwi
Highlight
flush left

Malgwi
Highlight

Malgwi
Highlight

Malgwi
Highlight
space required


UNDER PEER REVI EW

Chaper7 Optimal Control

not necessarily appears as a sum. A simple example illustrates the sequence nature of the
method.

Example7.20 Given N numbersx,, x,, ---, X, ,find the smallest one.

Rather than consider all N numbers simultaneously, define g, as the minimum of
number x, through x, . Then g, =x, , Continuing to choose between two alternatives
eventually leads to g, = min{xl, gz}: min{xl, Xy, e, xN}.

The desired result g, need not be unique, since more than one number may have the
same smallest value. The recursive nature of the formula g, =min{x,, g,,} is typically

of all discrete dynamic programming solutions.

From above example, optimality principle can be summarized as follows:

Optimal strategies of a multistage decision course have such property whatever initial
state and initial decision are, the remaining decisions must constitute an optimal policy
with regard to the state result from the first decision.Optimal problem of solving N -grade
decision course based on optimality principle is in nature to be simplified to solve the
optimal problem of solving N single-grade decision courses. In solving optimal problem,
positive calculation method can be adopted, inverting calculation method may be also
utilized. But for time-variant system, inverting calculation method has to be adopted.

The steps of applying dynamic programming to solve optimal problem is as follows:

Stepl Optimal problem which needs to be solved must be transformed into a
multistage decision course.

Step2 On the basis of optimality principle, the function equation of multistage
decision course is confirmed, which should include relative constraint conditions.

Step3 Recursive solution of function equation is solved.

7.10.2 Discrete optimality principle

1. Discretely optimal problem

We postulate that state difference equation of discrete system is as follows:

x(k+1)= flx(k), u(k), k], k=0,12,---,N-1 (7.284)
Performance index functional in each step transformation is expressed as:
J=Jx(k), u(k)] (7.285)

Initial state is x(0) and state vector x(k) at kth timeis nx1 matrix; u(k) is
permissible control vector at kth  time, which is rx1 matrix and which can be
constrained or not.

Applying dynamic programming method to solve discretely optimal control
problem.First-level decision course is to confirm that first-level state is transformed from

initial state x(O) under the control law u(O) :
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x(1)= £[x(0), u(0)] (7.286)
Performance index functional:
J, =J[x(0), u(0)] (7.287)
Optimal control #°(0) is confirmed in minimum. When the first-level state is converted

into the second-level state:

x(2)=fIx(). u(®)]= £1f[x(0). w(0)} ()] (7.288)
Performance index function is the following:
Jx() u(®)]=J1f1x0) u(0)] «()] (7.289)
General performance index functional of above two step transformation is as follows:
J,=J[x(0), u(0)]+ J[f1x(0). u(0)} u(1)] (7.290)

From equation(7.290), it’s easily observed that performance index functional J, is
only the function of control vector sequence u(O) and u(l) for initial state x(O) is given.
Then selecting control vector sequence #(0) and u(1) is required to make performance
index functional J, get minimum. This is two-level decision course.

Similarly, for N -level decision course, the state vector sequence of system is as
follows:

x(3)=fx(2). u@)]= £l 10 wO) «] u(2)] (7.291)

x(N)=flx(N 1) (N =1)]=#[x(0). u(0). ult) - u(N-2) u(N-1)]
Relative performance index functional is the following:
J,=J[x(0). u(0)]

Sy =J[x(0), u(O)]+J[x(1). u(1)]

that system state x(N ) is decided by equation(7.291). N -level decision course is to select
control vector sequence {u(0), (1), ---, u(N-1)} make performance index functional

in equation(7.292) get minimum.
On the basis of optimality principle, the optimization of N -level decision course

requires that however the first-level control vector u(0) is confirmed, remaining
(N —1)—level course must constitute (N —1)—level optimal course from the beginning of

system state x(1)= f[x(0), «(0)] under the control law «(0). If sign J3[x(0)] is marked as
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the minimum of performance index functional J, in N—level decision course,

sign J9_,[x(1)] is the minimum of performance index functional J, , in (N —1)—level
decision course; then the following recursive function equation can be gained, namely
J0[x(0)]= min{s[x(0),  u(0)]+%,[£[x(0). u(0)]} (7.293)

Recursive equation may be gained from equation(7.293) to acquire optimal control
strategy or optimal control sequence {uO(O), u®(l), - u'(N —1)} . Bquation(7.293) is
called to Bellman functional equation or dynamic programming basic equation.

Generally, function equation(7.293) is very complicate and it needs to be solved to
acquire recursive solution by digital computer.

Example7.21 State difference equation of discrete system is the following:

x(k+1)=2x(k)+u(k), x(0)=1
Please try to ensure optimal control sequence #(0), (1), u(2) to make the following

functional get minimum.

J- g[f(k)m(k)]

Solution:
In this example, we can apply dynamic programming to solve the optimal control
sequence u’(0), u°(1), «°(2) . If solving optimal control sequence is converted into

solving the optimal problem of multistage decision course, the given discrete system can be
considered as three-level decision course, namely N =3.

Step1, solve the optimal control law u0(2) from the final level. Postulate that x° (2)
is the final-level initial state to achieve relative input control u’(2) . Then performance

index functional J, is
J, =x*(2)+u*(2)

The derivative of above functional J, yields to the following form:

;ML(;) - aui(z)[xz(z)m%z)]: 2u(2)=0

Final input control solutionu”(2) can be achieved: u°(2)=0

Relative performance index functional J2[x(2)] is also gotten:

T x@)]=x(2)

Step2, inversely deduce it previous level. Then performance index functional J, is

Ji =W O, = [P W O+ [ )+ )]

In terms of optimality principle, have
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J ()= fgl(il?{[xz(lﬁ w?(1)]+ [ @)+ @)
= min{[x2(1)+ )]+ x2(2))

_ m(u)q{[ (1) )]+ [2x(1) + 1)} |

= r%l{s)c (1)+ (1) + 26 (1)}

The derivative of performance index functional J{[x(1)] is the following:

M[sz(m Ax(1u(1)+ 202 (1)]= 4x(1)+ 4u(1) = 0

Its solution: (1) = —x(1)
Performance index functional J*[x(1)]: J?[x(1)]=3x*(1)
Step3, inversely infer initial level. Then, performance index functional is:

Jo =[O+ O+ [ W)+ O} [ )+ (2)]

From optimality principle, we can know:

J;[x(0)]= mm{[x 1 (O))+ 7 <)

:r%r)l{ 2(0)+22(0)+3x>(1)}
:r%r)l{xz(O) ( )+3[2x(0)+u(0)} }

:run(gl{wx (0)+12x(0)e(0) + 42> (0)}

The derivative of above performance index functional JJ[x(0)] can be expressed as

6%(0)[13x2(0)+12x(0)u(0)+ 4u7(0))=12x(0)+ 84(0)= 0

Solution:  uJ(0)= —%x(O)

Functional: J2[x(0)]= 4x*(0)
Step4, get the optimal control strategy. From difference equation, the following
equation can be gained:

x(1)=2x(0)+u(0)

Hence, u°(1)=—x(1)=-2x(0)=u(0)= _%x(o)

On consider x(O)zl , we can obtain the optimal control sequence of given discrete

system.Namely, optimal control strategy is the following:
3 1

u’(0)=-=, u’(l)=——=, u’(2)=0
0=-2. w)=-1, we)
Example7.22 The transfer function of one-order inertia system is the following:
K
Gls)=
( ) Ts +1

- 458 -


Malgwi
Highlight
flush left and bold

Malgwi
Highlight
flush left

Malgwi
Highlight


UNDER PEER REVI EW

Chaper7 Optimal Control

. Ly
Functional: J = '[0 (x2 + )/uz)dt, x(O): X,
Final system state x(tf) is free. Assume that discrete control is adopted here to divide

control period [O, t fJ into three segments.Please try to ensure optimal control sequence to

make the given functional get minimum.
Solution:
Given transfer function is transformed into the following state equation:
. 1
X=——x+—u
T T

Discretize above state equation, and then get the difference equation:

At At
x(k+1)At=e Tx(k)Ar+K (1 —e T Ju(k)At , At is sampling period.

At At
Order g=e 7 and h=K [1 —e T J; and then above expression yields to

x(k +1)= gx(k)+ hu(k)

The discrete performance index functional is the following:

7= 3wy )

Apply dynamic programming to solve the optimal control problem for three given
segments. Here, J2[x(3)]=0, 0[x(3)]=0.

Step1, deduce the optimal control law u°(2) from the final level. Then performance

1=l @) )
g @)@} =2mta)ar =

Optimal controlu’(2):  «°(2)=0

index functional is the following:

Relative performance index functional J2[x(2)] is also gotten:

Jy [x(Z)] = xz(Z)At

Step2, inversely deduce it previous level. Then performance index functional J, is

=)+ O+, = 2 )+ 2 O+ [ )+ () e
In terms of optimality principle, have
IO 0] = minir (@) o )]+ [ 2) 0 (2) e
= min{x’ (1) + (O] + ¢ (2)
=m(1gl{[ 20+ 7 (O] [gx) Al Jae

u(l

—Il’l(ll)’l{(l-i-g )x (1)+2ghx(1 (}/+h )u }

ull
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The derivative of performance index functional J{[x(1)] is the following:

O [l g7 e 1)+ 2he V) + 2 b () = Pghe(t)+ 20y + 47 () v =0

ou(1)

. h
Its solution: " (1)=— » f e x(1)

Performance index functional J*[x(1)]: J7[x(1)]= (1+ l’gh ]xz(l)At
+

Step3, inversely infer initial level. Then, performance index functional is:
= [(0)+ w2 (O)]+ [ (1)+ 7 )+ [ ) + 12 (2)]
From optimality principle, we can know:

)[%(0)] = min {x2(0)+ 2 (O)]+ I [x(1)jae
- min{x2(0)+ n*(0)+ (1 o _ sz(l)}At

u(0) r+h

2
o 2 2 rg 2
= r?(})rf{x (0)+ u (O)+ (1 + s J[gx(0)+ hu(O)] }At
The derivative of above performance index functional J [x(O)] can be expressed as

(0] _ {2W(0)+ 2/{1 > X&) ][gx(0)+ hu(O)]}At =0

au(0) r+h’

The solution of above differential equation can be solved:

ghly +1* +yg°
2(0)-- S )
(}/+h )Z+ e h
Step4, get the optimal control strategy. From difference equation, the following

equation can be gained:

gr(r+h2)
x(1)=gx(0)+ hu\0)=
(=0} lo)= ST L
h hr
Hence, u'(1 :—g—xl =— £ x(0
0 y+h (r+ 1Y +g°h? )

On consider x(O): X, , we can obtain the optimal control sequence of given discrete
system.Namely, optimal input control strategy is the following:
0(n) gh(7/+h +m) B gh(;/+h +7/g)

u, (O)— 2o 0)— S5 Yo

(;/+h)+7gh (7/+h)+7gh

2 2

”10(1): - gzhr x(0)=~ gzhr Xo

(r+h2) +yg’h’ (r+h2) +yg’h?

Apparently, optimal input control sequences are the function of initial state variable.

2.Dynamic programming of discretely linear quadratic optimal problem
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Assume that the state difference equation of linear time-invariant discrete system is

the following:
x(k +1)= Ax(k)+ Bu(k) (7.294)
Please ensure the optimal control sequence {ug (0), u/ (1), Uy (N —1)} to make

the following performance index functional have minimum.
N-1
J=x"(N)Px(N)+ 3" [ (k)0 )+ " (k) Ru(k )| (7.295)
k=0

Here, x is system state vector which is nx1 matrix; u is control vector which is

rx1 matrix which is constrained or unconstrained permissible control; P and Q is

weighting matrix which is positive semi-definite symmetric matrix; R is positive definite
symmetric weighting matrix.
Firstly, we should consider the optimal control from final system state. The initial

condition of final system state is x(N —1), and then ensure optimal control law u$_ (N —1)
to make the following performance index functional minimum:
Jo ¥V =1), u(N-1)]=x"(N)Px(N)+x" (N =1)0x(N =1)+u" (N —=1)Ru(N —1) (7.296)
In order to conveniently discuss functional, mark
Ji[x(V)]=x" (N)Px(N)= 2" (N x(N)
In terms of optimality principle, the minimum functional expression can be gained as
Jo [x(N=1), u(N-1)]= ;%}Vig){xT(N—l)Qx(N—m u’ (N =1)Ru(N —1)+J [x(N)]}(7.297)

Equation(7.294) is replaced into equation(2.797) and then gain

JO [x(N-1)]= Ltr(rjlvifll){xr(N—l) (N —1)+u” (N =1)Ru(N -1)
(7.298)
+[Ax(N =1)+ Bu(N -1)]" P[4x(N —1)+ Bu(N - 1)]}

The terms of right side in equation(7.298) is partially differentiated from control

functionu .
a T a T a T
—(u"Ru)=2R —(Cu)= — =
Sm-am, La-c. rc)c
Hence,
0
Wy _ 2Ru(N —1)+2B" PBu(N —1)+2B" PAx(N -1)=0 (7.299)
6u(N—1)

Then optimal control % ,(N—1) which can make functional J%_[x(N—-1)] have
minimum can be confirmed:
u, (N-1)=—(R+B"PB)" B PAx(N -1) (7.300)
If the following expression is marked,
K, ,=—(R+B"PB)' B P4 (7.301)

Equation(7.301) can be written into the following form:
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ul (N-1)=-K, x(N-1) (7.302)
Equation(7.302) is replaced into equation(7.298) to get
JO (v -1)]= r(x}vig){xT(N ~1)0x(N —1)+x" (N -1)K"_RK,_ x(N-1)

(7.303a)
+x"(N-1J4-BK, | V,[4-BK, Jx(N - 1)}
Or equation(7.303a) is written into
o (Vv =1)]=x" (N =17, x(N -1) (7.303b)

Here,
VN—] = Q + KI(/—lRKN—l + [A - BKN—l ]T VN [A - BKN—]] (7-304)
Mathematical induction can be applied to be written for [=123,---,N from

equation(7.301) to equation(7.304).

u'(1)=—K x() (7.305)
Jx()]= x" (1)W,x(7) (7.306)
Among them, relative parameters can be expressed as
K, =(R+B"V, ,B) BV, 4 (7.307)
Z;Qp +K/RK,+[4-BK,|'V, ,[4- BK,] (7.308)
Equation(7.307) is substituted into equation(7.308), and then achieve:
V,=0+ AV, A- A"V, B[R+ BV, B] 'B"V, 4 (7.309)
Or written into the following form:
V,=0+A4"M, 4 (7.310)
In equation(7.310),
M, =V, -V_B[R+B"V,_ BBV, (7.311)

For V,=P , matrix M, can be confirmed from equation(7.310). From
equation(7.311), matrix V', , can be calculated out. In terms of such recursive method, we
can acquire matrices V,, ---, V, in turn. Then from equation(7.307), matrix K, can be
calculated out. Finally the optimal control sequence u{(0), (1), -, u$_ ,(N-1) may

be acquired from equation(7.305) in terms of given matrix K.

Summarizing above content, we can gain the following
Step1, order

Vy=P (7.312)

Step2, for [ =1, calculate the following matrices:
Z,=0+A4"V, 4 (7.313)
T,=B"V, A (7.315)
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F,=R+B"V,_B (7.316)
Step3, calculate
K, =FT, (7.317)
Step4, calculate the equation in terms of equation(7.309):
V,=7,-T'F'T, (7318)

Step5, recalculate the content from step 2 to step4 for /=N,N—1,---,3,2.
Step6, confirm the optimal control sequence
u'(i)=-K, x(i), i=012,--,N-1 (7.319)

From above calculation steps, we can easily know that dynamic programming can be
applied to solve the linear quadratic optimal control problem of discrete system by state
feedback. Here, matrix K, is called to optimal feedback gain matrix which is only related
to system matrix 4 , control matrix B and weighting matrices P,Q,R , not to initial
condition.Hence, optimal feedback gain matrix K, of linear quadratic optimal control
problem in discrete system may be calculate offline.

Above steps are suitable for discrete time-variant system.

Example7.23 The state difference equation of discrete time-invariant system is as
follows:

x(k+1)=x(k)+u(k), x(0)=10
Please try to ensure optimal control sequence to make the following functional get
minimum.

1

J = x2(2)+2[x2(k)+ uz(k)]

k=0
Solution:
In terms of given information in this example, we can know:
A=1, B=1, P=1, Q=1, R=I

L)=x"@)Px(2)=x"2Fx(2)=2*(2). v, =P=1

According to the given steps from equation(7.313) to equation(7.319).
(1)When /=1, calculate

Z,=0+AV,A=1+1=2
T,=B"V,A=1
F=R+B"V,B=2

(2)When /=2, calculate
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Z,=0+AV,A=1+15=2.5
T,=B"V,A=1.5
F,=R+B"V,B=1+15=2.5

2 3
K,=F'T,==x==0.6
2 2 72 5 2

3 3
V,=2,-T)F,'T,==-=x==1.6
2 2 272 2 2 5
(3) Give out the optimal control sequenceu_, (i ), i=0,1

u(0)=-K, ,x(0)=-K,x(0)= —%x 10=—6

(1) ==K x(1)==K,3(1) = =K, [x(0)  u(0)] = x(10-6)=-2

7.10.3 Continuous optimality principle

Presume that the state equation of linear continuous system is as follows:
x=fx(e), ule) 1] (7.320)
Initial state: x(t,) = x,

The performance index functional J of linear continuous system is expressed as
J=0[x(, ) tf]+ff Lix(e), u(r), lr (7.321)
Please find the optimal control u°(z).

Under the condition of given final time ¢, , if optimal control vector U °(z) has been

confirmed, the minimum J° of performance index functional is only the scalar function

of initial state x(¢,) and initial timez, ; namely:

Py o ]=alx) 6]=0"C,) ¢ ]+ j;"L[xO(t), W), tle (7322)

In terms of optimality principle, if time ¢ is a point in time period lto, th , the
course from time¢ to final time#, can be also divided into two-level course: [t, 1+ Af]
and [t+At, th , the minimum of performance index functional from time # to final

timez, can be written into the following form:

J[x, t]= l’lIllElUIl {J:/ Llx, u, tldr+ Q[x(tf )]}
e ) (7.323)
=min {LO Llx, u, tldr+ w Llx, u, tlar +6?[x(tf )]}

uelU +

If the course from time¢ to final timez, is optimal, the rear sub-process from 7+ Az
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to final time7, is also optimal, <7+ Af<¢,. Hence, rear sub-process may be transformed

into the following form:

J[x(z+Ar), t+Ar]= mm{[wL[x, u, t]dt+9[x(tf)]} (7.324)

uelU

When Af is very small, have
L), ul) p=Llx). u(e) A (7.325)

Then formula(7.323) can be approximately expressed into the following form:
S, =minle[x@), u(e), daer [ ar) ceadh(7.326)

Expression x(t + At) is developed into Taylor’s polynomial form:

dx ld X 2 _ 1 2
x(t+At)= x+7At S (At) +---—x+Ax+?!(Ax)

One-power polynomial is gotten from above polynomial, and then the following

expressions can be acquired:
x(t+At)=x+§At =x+Ax
t

M—?At . u, tlar

Jx(t+ A1) t+At]=T[x+Ax, t+Af]
At the adjacent field of function [x, ¢] ,above expression J[x+Ax, r+Ar] is
expanded into Taylor series, too. expression J O[x+Ax, t+At] is the x function and is
related to time¢. Hence, the corresponding Taylor’s series expansion is the following:

Z)} A PRV

Oox ot

PlesAe, bade e s FJO(

Equation(7.327) is replaced into equation(7.326), and then achieve:

I[x, t]:min{L[x, u, ac+Ix, f]+ Pﬂ[x ]}TAX o’lx, 1], }

uel ox ot
(7.328)

=J[x, t]+MAt+min{L[x, u, t]At{%} flx, u, t]At}
X

at uelU

For J°[x, t] is not related to input control law & , minimum of polynomial J°[x, ¢]

0
and w may be placed into the outside of minimum polynomial. Move and merge,
t
we can get:

_Mmm{ [x u, t] {8‘] [x ]}Tf[X, u, l]} (7.329)

ot uelU
Equation(7.329) is called to Bellman equation or dynamic programming of
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continuous system. It is a partially differential equation on J O[x, t] . After solving
equation(7.329), we can acquire the optimal control make functional J minimum. Its

boundary condition is

Il ) o ]=olle, ) e, ] (7.330)
If order
H(x, u, A, t)=L[x, u, t]+ M Tf[x u, 1
s s s s s ax s s (733 1)
= L[x, u, t]+ /1Tf[x, u, t]
0
Here, 1= M (7.332)
Ox
Then Equation(7.329) could be written into the following form:
0
—% = Izleing(x, u, A, t) (7.333)
When control lawu(¢) is not limited, then we may know:
0
—% =H(x, u, A, t) (7.334)

Above equation is called to Hamilton-Jacobi equation. Above equation demonstrates
that optimal control has to make Hamilton minimum. In fact, this is another form of
minimum principle.

We may deduce transverse condition and adjoining condition from equation(7.329).
Equation(7.329) can be written int the following form:

e u t]{m} O LA L (7.335)
ox Ot

Partial differentiation is done for state variable x , and then we can get:

oL[x, u, t]J{@JO[x, z]T af[x,au, ], [5 J°[x, t]T e t]+82J°[x, 1_,

ox Ox 0’x OxOt
(7.336)
0
The total derivative of expressiona— for time¢ 1is the following:
X
0 2 50 2 70
o/ [x, d]|_o*[x, t]+8 J [Zx, t] dx (7.337)
dt ox OxOt 0°x dt

Equation(7.337) is replaced into equation(7.336), and then we can gain

oLlx, u, 1] [ar[x, A olr. w, ], dfofl (7.338)
o o ox | x| '

If we order /I(t) = % , above equation may be written into the following form:
X
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dt ox Ox

a’/l(t)__{ﬁL[x, u, t]j{@JO[X, I]T af[xaa”s t]} (7.339)

This is adjoining equation required A = —% , which is the same as the previous result.
X

When =1, performance index functional at final time is the following:

Jo[x<tf )’ tf]: G[x(tfl tf]+ /”‘TN[x(tfl tf] (7.340)
Here, 4 and N have same dimension.
Partial differentiation is done for state variable x(¢), and then we can know:

ar'lx,) ] (o0l ) rf]{azv[x(:(),) rf]}fﬂ .

8x(t f) B Gx(t f) Ox tr

t=tf

Namely,

e, )= ook} ]{aN[x(tf ) t"'qrﬂ (7.342)

oxle, ) oxle, )

Equation(7.340) is used to be partially differentiated for time variable # . And then we

=ty

can get

at ot ot

A A S

o [x(t, ) f]%wz{@@[X(ffl ] s ﬂrrN[’C(ffl ff]}}” (7.343)

P

After considering equation(7.334) and equation(7.336), we can get

{H o0lle,) 1], FN[?C( ot f]:|} _0 (7.343)

o, o,

S

Example7.24 Assume x =u, please find optimal control uo(t) make the following

performance index functional minimum.
. vl o 1y 2
m1nJ=j X +—=x +u" {dt
u 0 2

In terms of given information, we can know:

Solution:

L:x2+%x4+u2, f(x, u, A, t):u

Construct the following Hamilton function:

H= L+8—Jf X +1x +u’ +8—Ju
ox 2 ox

In terms of Hamilton-Jacobi equation in equation(7.333), we have the following

equation:
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. : ) 1
_6L = mmH(x, u, A, t)= min L+6—Jf =min| x* +—x"* +u’ +a—Ju
al‘ ueu ueu ax ueu 2 ax
After considering that control lawu is not constrained, we can gain:
0
o x* +lx4 +u’ +aiu
OH 2 Ox oJ°
= =2u+——=0
ou ou Ox
0
Hence, u’ = _l@i
2 ox

aJ° .(2 1 . w’] (L, 1, %§q21(wy
———=min| X" +—x +u +—u|=mn| x +—x +——| ——=| —
ot ue 2 ox ueu 27 Talex) 2\ex

o, 1, 1(ary
=min| X" +—x ——| —
ueu 2 4\ ox

Boundary condition, le(tf )J =0, hence, J° [x(tf )] =0.

_ oS [x, 1]

If If we order A(t) p
x

, we can know:

0 1
———4
==L a0

Example7.25 Assume the state equation of system is the following:

< [0 1 0
xX= X+ |u
0 0 1
iy 1
Initial state: x(0)= {0}

Performance index functional: J = J-: (2xl2 + %uz jdt

please find optimal control uo(t) without constraint make the following performance
index functional minimum.

Solution:

In terms of given information, we can know:

, 1, 0 1 0]
L=2x{+—u", f= X+ |u
2 00 1

Construct the following Hamilton function:

H:L+6—Jf:2xf+lu2+ LA
Ox 2 ox, 0Ox, |

=2x; +—u’ +8—Jx2 +8—Ju
2 0ox, ox,

From Hamilton-Jacobi equation in equation(7.334), we can know:
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0
—aizminH(x, u, A, t)zmin(L+6—ij:min 2x12+lu2+a—Jx2+a—Ju
t ueu ueu ox ueu 2 le axz

Since control law# is not constrained, then we can achieve
oH oJ° oJ°
—=u+—-=0,namely, u=—-———-
Ou ox, ox,

0
We note that functional J is not related to time variable 7, hence, ry =0. Then the
t

following equation is always found:
x +1[8_sz N (ﬂj o0
2\ Ox, Ox, ox,
In order to solve this partial differential equation, we may assume that the following
optimal functional solution could satisfy above differential equation.
J’ =ax +2a,xx, +a,x;
The functional solution is substituted into above differential equation, and then we can
know:
(1 —a; )xlz + (al —2a,a, )xlx2 + (a2 —a; )x22 =0
Then we can get the following equation group:
1-a; =0, a,—2a,a, =0, a,—a; =0
The solution of above algebraic equation group is the following:
a, =1, a;=1, a,=2
The optimal solution of performance index functional J is the following:
J? =2x! +2x,x, +x;

Hence, optimal control law can achieve

0
u= _GL: —2()cl +x2)
ox,
This optimal control could be realized by state feedback component shown in
figure7.5.
- ) 1 1] 1
- - Hl——
5 3

2

Figure7.5 State feedback block diagram of example7.25
In the following, we will explore the optimal state trajectory of system. The
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homogeneous state equation of system is the following

. 0 1
xX= X
-2 =2

Its solution can be gained as follows:

x'(¢)= " x(0) =L '|(sE — 4)" [(0)

o e e R

Therefore, optimal control lawu°(¢) can be acquired:

_
ox,

Optimal performance index functional can be known as

u= =-2(x, +x,)=2e"(sinz - cos?)

J' = I: [Ze"zt (sinz+cost) + % x4e (sint —cost)’ }dt = I: 4edt =2
Example7.26 Assume the differential equation of system is the following:

yE2y+y=u
Please find optimal controlu to make the following performance index functional J

minimum; and the absolute value of control control = is always less than 1.
minJ = [ "lat
u 0

Solution:

If we select x, =y and xi =x, =y, then we can get the corresponding matrix

equation of example7.26.

State equation: = +| |
xs -1 -2 x, 1

Out equation: y=[1 0]
From Hamilton-Jacobi equation in equation(7.329), the following equation may be
gained:
a—J=0, Llx, u, t)=1,
ot
T
X
[a_.]} f(x, u, t)z 8_J G_J ? =6—Jx2+a—'](—xl—2x2+u)
Ox ox, Ox, | —x,—2x,+u| Ox Oox,

oJ . oJ oJ X,
——=minql+| — — =0
ot  ueU ox, Ox, | —x,—2x,+u

Then we consider the constraint condition: —1<u <1.

Calculate
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) oJ oJ X, . | oJ
minsl+| — — =min{ —u
uel ox, Ox, | —x,—2x,+u uel | OX,

Obviously, optimal control uo(t) has to satisfy the following expression:

. (6JJ
u =-—sgn| —
ox,

Since functional J is not related to time ¢, Hamilton-Bellman equation may become

ox,  Ox, ox,

ox,
This is a partial differential equation. We need to utilize computer software to acquire

optimal functional J°. And then employing derivative &J/0x, is to gain the optimal

controlu .
Summarizing the content of the section7.10.3, we can get the following steps of
solving the optimal control problem on continuous dynamic programming.

1) Construct Hamilton function:

H(x, u, A, t)zL(x, u, t)+[aé]0} f(x, u, t)
X

2) Extreme of Hamilton is utilized to solve the optimal controlu , namely
oH(x, u, t)

5 =0 (When control law u 1is not constrained)
u

Or,

rnlgl H (x, u, A, t)(When control lawu is permissible control)

From these expression or equation, optimal control lawu’ can be solved, which is the
function on variables x, ¢ and 8J°/ox.

3) Optimal control «° is replaced into Hamilton-Bellman in equation(7.329). And
then according to the boundary condition, optimal functional J°[x(¢), ¢].

4) Optimal functional J° is inversely replaced into optimal controlu’ again. And
then we can get optimal control functionu®[x(¢), ¢] which is the function of state variable.

Hence, we can realize the closed-loop control in terms of optimal control and optimal

performance index functional.

5) Optimal control u°[x(¢), ¢] is substituted into system state equation, and then
optimal system state trajectory x° (t) can be solved.
6) Optimal system state trajectory x° (t) can be substituted into performance index

functional to gain optimal expression ./ [x(¢)].

However, what we need to point out is that optimal control strategy from
Hamilton-Jacobi equation only represents necessary condition of optimization. In order to
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guarantee that performance index functional J has minimum, the matrix formed by
second-order partial derivative of equation(7.331) to control lawu has to be positive

definite, namely,

OL —+— 0 Ff } >0 (7.344)
ou’ Ou| du oOx
Inequality in equation(7.344) represents the sufficient condition that performance index
functional / has minimum. This condition is called to Lerande(#}j1E:45) condition.
In the general case, solving Hamilton-Bellman equation and Hamilton-Jacobi equation
is very difficult, especially difficult for solving analytic solution. Commonly, computer is

always employed to gain its numerical solution.

7.10.4 Relationship between minimum principle and dynamic
programming

We postulate that system state equation is the following:

x=fl(x, u, t) (7.345)
And performance index functional J

J = j @ ult) et (7.346)

In extreme principle, performance index functional is defined as the following

Hamilton function in equation(7.347). Here, /1(1) is adjoining vector or co-state vector.

H=L[x(e), ule) o]+ 2 (0)f[x(e) ule), ] (7.347)
In order to make performance index functionJ get minimum, the Hamilton function

should be absolutely minimum. However, for dynamic programming, Hamilton-Bellman
equation is represented as follows:

_Mmm{ [x, u, ]+ {a] L. ]T flx, u, z]} (7.348)

at uelU

0

If functional expression {L +aai f } has minimum, relatively optimal expression will
x

be acquired.

0
If order A(t)= % , we easily know that the construction of dynamic
X
programming and extreme principle is completely same. They can both calculate the same

results on optimal control problem.
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Chapter summary

This chapter focuses on the theme of optimal control which includes basic concept of
optimal control, functional and its extreme condition, optimal control solution, Pontryagin’s
minimum principle, Bang-bang control, linear quadratic optimal control and its sub-optimal
control, optimal control of discrete control system and dynamic programming. Firstly,
some basic concepts such as function and functional are gradually provided and explained.
Then, the solution of optimal control with unconstrained system is deduced and given out
by variation method. Then, Pontryagin’s minimum principle is deduced and explained to
provide some examples for illustrating relative theories. On the basis of minimum principle,
this chapter also illustrates Bang-bang control(switch control) and linear quadratic optimal
control. Finally, optimal control of discrete control system is also deduced and explained to
make readers easily understand given ideas. Besides these content, dynamic programming
is also given out, which can deduce the same result as minimum principle. In this chapter,
readers need to mainly master minimum principle, bang-bang control, linear quadratic
optimal control and its sub-optimal control, optimal control of discrete system and dynamic

programming.
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Review Questions

7.1. Please narrate the main thoughts of state feedback control system.

7.2. Please tell the specific application fields of output feedback control system.

7.3. What’s pole assignment? How do you think the pole assignment of control is realized?

7.4. Please tell us the difference between pole assignment and partial pole assignment.

7.5 What is the Diophantine equation? What case is it fit for?

7.6 Please say out your comprehension on Pontryagin’s minimum principle.

7.7 Please give out the performance functional of linear quadratic optimal control and
relative Hamilton function.

7.8 Please list out and explain the necessary condition that makes performance functional
get extreme value.

7.9 Please say the core principle of dynamic programming, and write out Bellman recursive

equation of dynamic programming.

Problems

Problem7.1.Please find the minimum of the following function which range of variable is
[-2 6]
fx)=x"+4x*+3x-5
Problem7.2.Please find the minimum of the following function.
fx)=x"+4x"+3x-5
which constraint condition is x* +2x+3=0.
Problem?7.3.Function f(x)=2x7 +3x] +4x7 +2x,x, + 3x,X, — 5x,x, + 4 please find the

extreme value points of given function and minimum.
Problem7.4.Please find the optimal curve of functional J = J[x(¢)]= J: (x'2 +2tx+x)7lt ts

constraint conditions are x(0)=0 and x(1)=1.

Problem7.5.The state equation of a given system is
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