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grasp three basic methods: variation method, minimum principle and dynamic
programming.

Objectives
When you have learned this chapter, you should be able to:
 Know what optimal control is.
 Understand basic methods of realizing optimal control of control system.
 Grasp core factors of minimum principle and dynamic programming.
 Recognize Bellman equation.

7.1 Concept of Optimal Control

In chapter6, as we have known, if system is completely controllable, a state feedback
matrix is always designed to make that closed-loop poles are equal to the desired poles to
reach the dynamic requirement desired. Control system indexes designed in terms of pole
assignment is mainly determined by the selection of the desired poles of closed-loop
control system; however in practical system, some indexes are maximum or optimal in
control system. Hence, optimal control is also a kind of design method which core problem
is how to select control signal to make system indexes be optimal in some significance.

In engineering, people always wish to find a best scheme to acquire optimal effect.
Similar engineering includes optimal problem.

For example, there are two warehouses where some goods are placed. There are 2000
merchandises in warehouse A, and 1500 ones in warehouse B.Three workshops I, II and III
respectively need 900, 600 and 1000 merchandises. If the merchandises in warehouse A are
carried respectively to the three workshops I, II and III, the relative service fee is 1 $,
2$ and 4$. If the merchandises in warehouse B are carried apart to the three workshops I, II
and III, the service fee is 3$, 5$ and 8$. How is these merchandises carried to make that
transportation cost become cheapest? In nature, this is an optimal allocation problem.

We postulate that the number of merchandise from warehouse A to workshop I, II and
III is respectively 321 ,, xxx ; and that the number of merchandise from warehouse B

Optimal Control

This chapter provides optimal control theory for readers.In this chapter，the optimal
control conception and variation method are respectively narrated and explained to help
readers to understand optimal control problem.Furthermore maximum principle and linear
quadratic optimal control and dynamic programming will be also narrated and analyzed to
aid readers to correctly apply optimal control into practice. In this chapter, readers need to
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to workshop I, II and III is respectively 654 ,, xxx . Then the total fee could be expressed

as
  654321 85342 xxxxxxxf 

In optimal problem, function  xf is called aim function. The task of optimization is

to confirm variable x to make that function  xf get optimal value such as minimum
value or maximum value. But variable x is not free but limited by objective conditions
such as

1200321  xxx , 1800654  xxx

90041  xx , 60052  xx , 100063  xx

In this example, if aim function and constraint condition is a one-power function of
variable x , such optimal problem is called linear optimization problem. For the serving
fee from warehouse A to workshop I, II and III is cheaper than that from warehouse B to
workshop I, II and III, we should firstly select merchandises from warehouse A. So that
the above inequality could be converted into the following equality.

1200321  xxx , 1800654  xxx

Then above example will become an optimization problem with equality constraint.
Aim function and constraint conditions are not only limited to linear cases, the

variable of aim function is possibly nonlinear. Hence aim function J is generally expressed
as

   xfxJ  (7.1)
Equality constraint condition:

mixgi ,,3,2,1,0 





 

(7.2)

Inequality constraint condition:
  ljxh j ,,3,2,1,0  (7.3)

The optimal task is to find suitable variable x to make aim function be the most
optimal in all possible value.

If variable is constant or not related to time, such optimal problem is called static
optimization problem. Otherwise, optimal problem is called dynamic optimization
problem.

In practice, there are all kinds of optimal problem, and we do not possibly discuss all
cases. In this chapter, we only discuss the optimal problem which could be depicted by
system state equation.

The prerequisite of optimal control is narrated as follows:
1. State equation which is used to depict control system dynamically.
A given system state equation is

 tuxfx ,,


(7.4)
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Here, function f is n dimension vector function, and it can be continuously derived for
state variable x and time variable t .
For discrete-time control system, its state equation can be expressed as

      kkukxfkx ,,1  (7.5)
2.Definite control scope
In actual engineering, control vector  tu can not be usually any value in given

space R . For example, control voltage and control power in system can not be randomly
large, which have to be limited by some constraint conditions.

  )(,,2,1,0, rmmjuxj   (7.6)

The set of all points which can satisfy above expressed is marked as
    

0, 


uxj
tuU


(7.7)

Equation(7.7) is said to control set. Control law  tu which belongs to set   Utu  is
called admissible control.

3.Definite initial condition
Usually, the initial time of control system is given and definite. If initial state  0tx is

given, such state is called fixed end. If initial state  0tx is random, such state is called

free end. If initial state satisfies some constraint condition:
    nmmjtxj  ,,2,1,00  (7.8)

the relative initial end set is as follows:
     

000
0 


txj

tx


(7.9)

Then,   00 tx , such initial condition is said to variable end.

4.Definite terminal condition
Similar to initial condition, fixed end means that end time ft and end state  ftx are

given. Free end means that state  ftx may be random under the condition of given

time ft . Variable end means such case   fftx  . The objective set is formed by constraint

condition    0fj tx .

     





0fj txff tx


(7.10)

5.Performance index
Performance index expression could be generally expressed as

       dtttutxLttxJ ft

tff 
0

,,, (7.11)

Here, first term is scalar term which is related to final time ft and final state  ftx ; and

this term shows the certain requirement for final state or final time. Hence we term
expression   ff ttx , final term. The second term is integral term demonstrates the
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requirement satisfied by state vector and control vector in the whole control course. Final
hour ft may be fixed or free, which is up to specific control problem.

For discrete control system, equation(7.11) could be transformed into the following
form:

       





1

0

,,
N

kk
kkukxLNxJ  (7.12)

In equation(7.11) and equation(7.12), the second term is actually dynamic index
function. If we do not consider

If final term   ff ttx , is not considered, the corresponding performance index

expression can become

    dtttutxLJ ft

t 0

,, (7.13a)

    





1

0

,,
N

kk
kkukxLJ (7.13b)

Such index form in equation(7.13) is called integral form of optimal control.
If dynamic index term is not considered, performance index function will be

  ff ttxJ , (7.14a)

  NNxJ , (7.14b)
Equation(7.14) is called final form of optimal control.
Optimal control problem is to find a best control vector  tu in given control variable

collection to make that the performance index of controlled system could acquire optimal
index from original state to aim state. Control vector  tu which could make control system

holds best performance indexes is called optimal control  tu* . The solution of state

equation in optimal control vector  tu* is called optimal trajectory  tx* . The performance

index J acquired along the optimal trajectory  tx* is called optimal index *J .
If control system is designed in terms of linear quadratic performance indexes, linear

control law can be easily realized to acquire success in engineering. The common form of
linear quadratic performance index is the following:

            dttuQtutxQtxtxQtxJ ft

t

TT
ff

T  
0

210 2
1

2
1 (7.15)

Linear quadratic performance index of discrete control system:

                  





1

210
0

2
1

2
1 N

kk

TTT kukQkukxkQkxNxNQNxJ (7.16)

Here, matrices  ftQ0 ,  tQ1 ,  tQ2 and  NQ0 ,  kQ1 ,  kQ2 are both weighting

matrix.
Definition of Optimal Control Problem From all among all admissible control

functions Uu , find that one which minimizes J of equation(7.5) subject to the
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dynamic system constraints of equation(7.4) and all initial and terminal boundary
conditions that may be specified.

If the control is determined as a function of the initial state and other given system
parameters, such control system is said to be open-loop. If the control is determined as a
function of the present state, then such control is a closed-loop or feedback control law.

If the control system is completely controllable, there is at least one control which will
transfer any initial state to any desired final state. If control system is not controllable, it is
not meaningful to search for the optimal control.

However controllability does not guarantee that a solution exists for every optimal
control problem. Whenever the admissible controls are restricted to the setU , certain final
states may not be attainable. Even though the system is completely controllable, the
required control may not belong to set U .

7.2 Static optimal control

The objective function of static optimal control problem is a multiple variable function
in nature. Its optimal solution could be gained by classical differentiation. The objective
function of dynamic optimal problem is a functional which extreme value can be acquired
by variation method. Now let’s review mathematical model of linear programming
together.

7.2.1 Mathematical model of linear programming

A company produces two kinds of products A and B . The resource, material and
laboring day are listed in the following table7.1; please find how to make maximum profit.

Table7.1 Information of products
Materials A Product B Product Sources
Brass(ton) 9 4 360

Power(Kilowatt) 4 5 200
Working days 3 10 300

Profits(Million RMB
per kilogram)

7 12

Solution:
We postulate that this company may produce product A with 1x kilogram and

product B with 2x kilogram; and then we can know the total profit expression:

21 127 xxS 

The mathematical model of this problem can be depicted as the following:
Objective function:

21 127max xxS 
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Constraint conditions:

 














,2,10
300103
20054
36049

21

21

21

ix
xx
xx
xx

i

Summarize above optimal problem, we can gain the following characteristics:
(1) Each problem is to find the value of a group of variable. The value of some group

of variable represents a specific scheme.
(2) There are some constraint conditions. These constraint condition could be

expressed by equality or inequality.
(3) A desired object function need to be calculated to find an optimal value.
The optimal problem with above three characteristics comes down to linear

programming problem, which mathematical model is said to the mathematical model of
linear programming.

The general mathematical form of linear programming model is
    nnxcxcxcxcxfor  332211minmax (7.17)

General constraint conditions:
 
 

 
 





















njx
bxaxaxaxa

bxaxaxaxa
bxaxaxaxa

j

mnmnmmm

nn

nn

,,2,10
,

,
,

132211

22123222121

11113212111








(7.18)

Variables nxxx ,,, 21  are called to decision variable.

The basic steps of building the mathematical model of linear programming:
Step1, confirm decision variables nxxx ,,, 21  . Decision variables is the base of

building mathematical model.
Step2, give out constraint conditions, and add some auxiliary non-negative conditions

according to practical problem. Constraint conditions could be expressed by inequality or
equality. Usually, table is employed to confirm all limited data to avoid the unnecessary
limitation or requirements.

Step3, ensure objective function including ascertaining maximum or minimum.
Objective function has to be expressed by linear function of decision variable.

7.2.2 Extreme value of single-variable function

If we postulate that expression  xfJ  is a continuously derived function with

single variable in the range  ba, , then necessary condition of finding its extreme value *x
is the following:
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  0*

' 
xx

xf (7.19)

The necessary and sufficient condition that variable *x is minimal value is

  0*

' 
xx

xf ,   0'' xf (7.20)

The necessary and sufficient condition that variable *x is maximal value is

  0*

' 
xx

xf ,   0'' xf (7.21)

Extreme point *x in terms of derivation of objective function is a stationary point,
which characteristics are as follows:

(1)When   0'' xf , extreme point *x is maximal point;

(2)When   0'' xf , extreme point *x is inflection point;

(3)When   0'' xf , extreme point *x is minimal point.

These extreme value  *xf is only relative to adjacent value  xf ; hence they have
partial characteristic, which is called to relative extreme value. In practice, there are a lot of
extreme points, and then we need to find a minimum among all minimal value  xf .
Minimum has global characteristic and it is unique. Minimum is generally marked as

    xfxfJ
Xx

 min** (7.22)

Example7.1 Please find the minimum of the following function which range of
variable is ]51[ ， .

  86 24  xxxf
Solution:
The first order derivative of given function is as follows:

  xxxf 124 3' 

Order   0' xf , and then gain:

01 x , 32 x , 33 x (discard)

Hence, the relative extreme value  xf can be calculated when 5,3,0,1x :

  31 f ,   80 f ,   13 f ,   4835 f
The second order derivative of given function is

  2'' 12xxf 

For expression  xf '' is always greater than zero, all points in definition domain are
minimal except 0x .

Comparing above all extreme values, we can get minimum.

         15,3,0,1min*  ffffJ

Namely, when 3x , minimum   13 f .
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7.2.3 Extreme value of multiple-variable function

Assume that a general form of multiple-variable function is as follows:
 nxxxff ,,, 21  (7.23)

The condition that above function ascertains extreme value is

0


x
f (7.24)

Or its gradient vector is zero, namely

0
21



















T

n
u x

f
x
f

x
ff  (7.25)

The necessary and sufficient condition of minimum is

02

2




x
f (7.26)

Namely, the following positive matrix:




























































nnnn

n

n

x

xx
f

xx
f

xx
f

xx
f

x
f

xx
f

xx
f

xx
f

x
f

x
ff

2

2

2

1

2

2

2

2
2

2

12

2
1

2

21

2

2
1

2

2

2
2









(7.27)

Example7.2 Function   364445 23132
2
3

2
2

2
1  xxxxxxxxxf ; please find the

extreme value points of given function and minimum.
Solution:
In terms of equation(7.24) and equation(7.25), we can acquire

042 31
1



 xx
x
f ; 06410 32

2



 xx
x
f ; 048 23

3



 xx
x
f

Solve above equation group and we can gain:

4
3

1 x ,
4
3

2 x ,
8
3

3 x

Hence, extreme value point is
T

x 



 

8
3

4
3

4
3

The function matrix of second order derivative is:
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0
840
4100
402

2
3

2

23

2

13

2
32

2

2
2

2

12

2
31

2

21

2

2
1

2

2

2
2 











































































x
f

xx
f

xx
f

xx
f

x
f

xx
f

xx
f

xx
f

x
f

x
ff x

Hence, above matrix is positive; and point
T

x 



 

8
3

4
3

4
3 is minimum point.

Minimum  xf * is the following:

 
16
213

4
18

32
36

64
36

16
45

16
9** xf

7.2.4 Extreme value with the condition of equation constraint

For extreme value with the condition of equation constraint, equivalent transform may
convert such problem into extreme value with the condition of no constraint.

Let me give an example, please find the volume of cuboid which volume is maximum
and which surface area is 2a .

We can postulate that the radius and height of column is respectively r and h ; and
then we can get total area expression which is a constraint condition:

  022, 22  arrhhrg  (7.28)
And the volume of cuboid is

hrVJ 2 (7.29)
The methods of solving such problem have many methods such as substitution method

and Lagrange method.
(1) Substitution method
From equation(7.28), the expression of variable h could be expressed as

r
rah




2
2 22 

 (7.30)

Equation(7.30) is substituted into equation(7.29), and then given problem can be
transformed into no constraint problem.

2
2

2
2 3222

22 rra
r
rarhrV 


 








 
 (7.31)

The derivative of equation(7.31) for variable r is as follows:

03
2

2
2



 ra
r
V  (7.32)

The solution of equation(7.32) is
6

* ar  ,
3
2* ah  .
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For 062

2



 r
r
V  , above extreme point is maximum. Maximum volume is

 
3
2

6
, *** ahrVJ  (7.33)

(2) Lagrange method
According to aim function of equation(7.29) and constraint condition of

equation(7.28), we can construct Lagrange function:
   222 22, arrhhrhrgJH   (7.34)

Equation(7.34) is a no constraint function with three variable. Its extreme conditions
are as follows:

  0422 

 rhrh
r
H  , 022 


 rr
h
H  , 022 22 


 arrhH 


Solve above equation group to gain extreme point:

6
* ar  ,

3
2* ah  ,




6
1

2
* a

 (7.35)

If extreme points of equation(7.35) is substituted into equation(7.34), we easily find
that expression   0, hrg can be found.

Summarizing above Lagrange function, we can write common case.
Assume a continuous and derivative aim function:

 uxfJ , (7.36)
Equality constraint condition is

  0, uxg (7.37)
Here, sign x is n -dimension column vector; signu is r -dimension column vector;

and sign g is n -dimension column function.
In terms of Lagrange multiplier, we can write out Lagrange aim function:

     uxguxfuxgJH TT ,,,   (7.38)
Utilizing multiple variable function to solve extreme value, we can know that the

necessary condition of aim function which could have extreme value is the following:

0


x
H , 0



u
H , 0




H (7.38)

Namely,

0











 

T

x
g

x
f (7.39)

0















 

T

u
g

u
f

u
H (7.40)

  0, 

 uxgH


(7.41)

Here,
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nnn

nnn

n

n

T

n

T

x
g

x
g

x
g

x
g

x
g

x
g

x
g

x
g

x
g

x
g

x
g
x
g

x
g











































































































21

2

2

2

1

2

1

2

1

1

1

2

1

(7.42)

Example7.3 Please find the extreme value *x and *u of aim function

  uQuxQxuxfJ TT
21 2

1
2
1,  ;

It has to satisfy the constraint condition   0,  dFuxuxg .

Matrices 1Q and 2Q are positive matrices; and matrix F is random matrix.
Solution: Construct Lagrange aim function:

   dFuxuQuxQxuxgJH TTTT   21 2
1

2
1,

The extreme condition of above Lagrange aim function:

01 

 xQ
x
H , 02 


 FuQ
u
H , 0


 dFuxH


Combine and solve the extreme point:

  dQFFQFQu TT
1

1
12* 



  dQFFQFQFEx TT
1

1
12

* 


  dQFFQFQFQQ TT
1

1
1211

* 


Since matrices 1Q and 2Q are positive matrices, obviously extreme point could
satisfy the minimum condition.

7.3 Extreme Condition of Variation Method and Functional

7.3.1 Functional concept

For independent variable, if there is a function   tx , a certain value J is related to

each function  tx ; then we think that variable J is a functional which depends on

function  tx , marked as   txJ .

Apparently, the independent variable x of functional   txJ is the function of time

variable t . Hence sometimes functional   txJ is called to the function of function. The
difference between function and functional is that the independent variable of functional is
function and that the argument of function is variable.

If functional   txJ satisfy the following relationship:
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     txaJtaxJ  (7.43a)

          tyJtxJtytxJ  (7.43b)

then functional   txJ is linear functional; in equation(7.43), sign a is real and

functions  tx and  ty are the function in function space.

7.3.2 Functional variation

The variation x of functional variable  tx is defined as

   txtxx * (7.44)

Function  tx* is aim function an optimal trajectory in optimal control; and function

 tx is some function which have the same function space as aim function  tx* .

The increment of functional   txJ could be expressed as the following

        txJxtxJxtxJ  , (7.45)
If equation(7.45) can be converted into the following form

         xxtxxtxLxtxJ  ,,  ， (7.46)

And when 0x ,    0, xtx  and   xtxL , is linear functional of

variation x , expression   xtxL , is called to the one order variation of

functional   txJ , marked as J .
In terms of above definition of variation, we can know that the variation of functional

is a kind of linear mapping; hence the calculation rules of variation is similar to linear
calculation of function.

Assume that 1F and 2F are both the function of function x , derivative


x and
variable t ; the following variation rules are always found:

1)   2121 FFFF  

2)   122121 FFFFFF  

3)  












 

dttxxFdttxxF ,,,, 

4) x
dt
dx  



Example7.4 Assume 1F and 2F is the derivable and continuous function of

variables x , y and 'y . Please try to testify above rules of variation rules.
Demonstration:
1)   2121 FFFF  
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     

21

'
'
22'

'
11

'
'
2'

'
121

'
21'2121

FF

y
y
Fy

y
Fy

y
Fy

y
F

y
y
Fy

y
Fy

y
Fy

y
F

yFF
y

yFF
y

FF





















































































2)   122121 FFFFFF  

     

1221

'
'
11

2
'

'
22

1

'
'
2

1'
1

2
2

1
1

2

'
21'2121

FFFF

y
y
Fy

y
FFy

y
Fy

y
FF

y
y
FF

y
FFy

y
FF

y
FF

yFF
y

yFF
y

FF




















































































3)      dxyyxFdxyyxF '' ,,,, 

       

   

   

 dxyyxF

dxyyyxF
y

yyyxF
y

dxyyyxF
y

dxyyyxF
y

ydxyyxF
y

ydxyyxF
y

dxyyxF

'

''
'

'

''
'

'

''
'

''

,,

,,,,

,,,,

,,,,,,





































































4) y
dx
dy  



y
dx
d

x
x
yx

x
y

dx
d

x
x
y

dx
dx

x
y

dx
d

x
dx
dy

x
x

dx
dy

x
y
















































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
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
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





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
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





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'
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7.3.3 Functional extreme

Assume that function  tx0 is some function in all permissible function set X of

functional   txJ , for Xx , if the following inequality is always found:

     txJtxJ 0 , or      txJtxJ 0 (7.46)

then it’s thought that functional   txJ reaches maximum or minimum at  tx0 . And the

curve of function  tx0 is called to the extreme curve of functional   txJ .

If functional   txJ reaches extreme value at    txtx 0 , the necessary condition is

     00
0




txJJ
txx

 , or     0,
0

** 





 xxJ
d
dxxJ (7.47a)

Demonstration:
Assume that the following expression reaches extreme value at 0a .

    xatxJa   0

Hence,

     

     

    

     xxaxxtxJ
a

xaxaxxatxJ
a

txJxatxJ
a

a

a

a

a

a









max,,lim

,
lim

lim

0lim0

000

00

0

00

0

0

'




















When 0a , 0xa ; then   0,0 xax  , hence

     0,0 00
'  JxtxJ 

For multiple -variable functional,
      txtxtxJJ n,,, 10  (7.47b)

In equation(7.47b),      txtxtx n,,, 10  are both augmented functions.

Variation J of multiple-variable function is defined as follows
      nn xatxxatxxatxJJ   ,,, 1100  (7.47c)

The necessary condition that multiple-variable functional gets extreme is as follows:
0J (7.47d)

In practice, the optimal trajectory curve  tx* of functional   txJ is not usually
selected at random, but limited by all kinds of constraints. In order to explore the extremum
problem of functional   txJ , let’s discuss the extreme problem of the following simplest
functional:

    








1

0

,,
t

t
dttxxFtxJ (7.48)

UNDER PEER REVIEW

Malgwi
Highlight
flush left

Malgwi
Highlight
space required



Chaper7 Optimal Control

- 395 -

And equation(7.48) has to satisfy the boundary condition:
  00 xtx  ,   11 xtx  (7.49)

Now let’s explore the condition when trajectory curve  tx reaches maximum or

minimum. Assume that all permissible curves could be expressed by optimal curve  tx
and real coefficient a and the variation of curve  tx , namely:

    xatxtx  (7.50)

Term x is the variation of function  tx , namely

0
10


 tttt
xx  (7.51)

Obviously, 0
0

xx
tt



, 1

1

xx
tt



. When 0a ,  txx  is extreme curve when

functional   txJ reaches extreme. Expression(7.50) is substituted into equation(7.48),
and then we can get the following equation:

       
t

t
dtxaxxaxtFxatxJa

0

'',,  (7.52)

Since  a gets extreme at 0a , in terms of the necessary condition of extreme,
the following expression always exists:

     00 1

0

'
'

0

' 


















 


dtx
x
Fx

x
FxatxJ

a
t

t
a

 (7.53)

According to integration by parts and equation(7.51), there is the following expression

   

































 1

0

1

0

1

0

1

0

1

0
''''

'
'

t

t

t

t

t

t

t

t

t

t
dt

x
F

dt
dxdt

x
F

dt
dxx

x
Fxd

x
Fdtx

x
F  (7.54)

Equation(7.54) is replaced into equation(7.53), and then yields to

   






















1

0
'

' 0
t

t
xdt

x
F

dt
d

x
FJ  (7.55)

If equation(7.55) is always found, then the following equation has to exist:

0' 













x
F

dt
d

x
F (7.56a)

Namely, If functional   txJ gets extreme, the function  tx of functional   txJ
has to satisfy the above differential equation. The necessary condition that
functional   txJ gets extreme is the following:

0' 













x
F

dt
d

x
F , 0

0



















ft

t

x
x

F  (7.56b)

Equation(7.56) is called to the Euler equation of functional   txJ .

Example7.5 Please find the optimal curve of functional     dttxxtxJJ  
1

0

2' 10 .

Its constraint conditions are   00 x and   11 x .

UNDER PEER REVIEW

Malgwi
Highlight
space required

Malgwi
Highlight
space required

Malgwi
Highlight
flush left

Malgwi
Highlight
space required

Malgwi
Highlight

Malgwi
Highlight



Modern Control Theory

- 396 -

Solution:
From given functional   txJ , we can know:

  txxF 102' 

According to Euler equation(7.56), we can write out the Euler equation of given
functional:

0210 ''
' 











 xt

x
F

dt
d

x
F

Solve above differential equation, and we can get

  21
3

6
5 CtCttx 

Given constraint condition is   00 x and   11 x , hence the unknown coefficient

of indefinite integral  tx can be solved:

6
1

1 C 02 C

Hence the extreme curve  tx* of functional   txJ is

  tttx  3*

6
5

The extreme problem under equality is called the extreme problem of condition
functional   txJ . For such problem, it is usually transformed into the extreme problem of
no constraint condition by Lagrange multiplier in equation(7.38). For the form of
functional   txJ in equation(7.48), Euler equation in equation(7.56) can be utilized, too.

7.4 Optimal Control Solution of Unconstrained System

Using Variation Method

We postulate that state equation of system is as follows:

    ttutxfx ,,


,   00 xtx  (7.57a)

Performance index expression is

       dtttutxLttxJ ft

tff 
0

,,, (7.57b)

 and L are scalar function.
The optimal control problem is to confirm the necessary condition of functional
  txJ reaching extreme value under the constraint condition of state equation in

equation(7.57). If control variable  tu is not limited, such control problem will become no
constraint control problem.

If final term   ff ttx , is not considered, the corresponding performance index
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expression may become the form of equation(7.48).

7.4.1 Optimal control solution by Euler equation group

If the final term of performance index expression is not considered, it will become

    dtttutxLJ ft

t 0

,, (7.58)

Although the form of equation(7.58) is the same as that of equation(7.48), they are
different in nature. Equation(7.58) is a multiple-variable functional which includes two
variables  tx and  tu . Adjust the form of equation(7.58) into the following:

             dttutxtutxtLtutxJ
t

t
1

0

'' ,,,,, (7.59)

The boundary condition of equation(7.59) is such
 
 








00

00

utu
xtx
,

 
 







11

11

utu
xtx

(7.60)

In equation(7.59), the aim function integrated is a five-variable continuous function;
and the functions  tx and  tu have second-order continuous partial derivatives. The
discussing method employed here is similar to that in section7.3.3. For real  and  , we
can construct function sets as the following:

  xtxx  ,   utuu  (7.61)

Equation(7.62) is the adjacent curve of the following equation：
 
 







tuu
txx

(7.62)

x and u are the variation of variables x and y ; namely,

0
1100


tttt
uxux  (7.63)

Equation(7.61) is substituted into equation(7.59), and then we can get

      
  


1

0

'''' ,,,,

,,
t

t
dtuuxxuuxxtL

utuxtxJuxJ




(7.64)

Equation(7.64) gets extreme at 0  , hence

0
0






J , 0

0






J (7.65)

Namely,

01

0

1

0
'

'
'

0













































xdt
x
L

dt
d

x
Ldtx

x
Lx

x
LJ t

t

t

t


 

(7.66a)

01

0

1

0
'

'
'

0













































udt
u
L

dt
d

u
Ldtu

u
Lu

u
LJ t

t

t

t


 

(7.66b)
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So that the necessary condition that functional     tutxJ , gets extreme is such:






































0

0

'

'

u
L

dt
d

u
L

x
L

dt
d

x
L

(7.67)

Equation group(7.67) is called to Euler equation group of equation(7.59).
Example7.5 Please find the optimal trajectory curve of functional

       
1

0

2'2' 2, dtxuuxtutxJ ,which satisfy the following constraint conditions.

 

 

























1
2

,00

1
2

,00





uu

xx

Solution:
xuuxL 22'2'  , hence Euler equation group is the following:

 

 












022

022

'

'

u
dt
dx

x
dt
du

Namely,











0
0

''

''

ux
xu

Eliminate the variableu to yield to
  04  xx

Its general solutions of above differential equation are














tCtCeCeCu

tCtCeCeCx
tt

tt

sincos

sincos

4321

4321

According to given constraint condition, we can get the unknown number of above
equation group.

0321  CCC , 14 C

Hence, optimal trajectory curve is








tu
tx

sin
sin

Example7.6 Please find the optimal trajectory curve  tx* and control law  tu* of the

following functional     dttutuJ 2'23

0 2
1

  ,which satisfy the following constraint

conditions.
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ux 


,   00 u ,   63 u ,   00 x
Solution

    tutuL 2'2

2
1

 ，in terms of equation(7.67), we can get the following Euler

equation:
0'' uu

Solve above differential equation to get the following solution:
  tt eCeCtu  21

In terms of given constraint condition, we may get the unknown number:

1
6
6

3

1 

e
eC ,

1
6
6

3

2 

e
eC

Hence, optimal control law *u is the following:

tt e
e
ee

e
eu 







1
6

1
6

6

3

6

3
*

Optimal trajectory curve *x :

1
12

1
6

1
6

6

3

6

3

6

3
*








 

e
ee

e
ee

e
ex tt

7.4.2 Optimal control solution by Lagrange multiplier

If equation(7.57a) is the constraint condition of equation(7.57b), we may utilize
Lagrange extreme method to gain the extreme point. Specific deducing course is as
follows.

Constructing augmented functional aJ is

          dtxtuxfttutxLttxJ ft

t

T
ffa  












 



0

,,,,,  (7.68)

Constructing Hamilton function is
     tuxftuxLtuxH T ,,,,,,,   (7.69)

Here, nR is Lagrange multiplier vector, then augmented functional is

     dtxtuxHttxJ ft

t

T
ffa  



 



0

,,,,  (7.70)

We postulate that the original time 0t and its state are both given,   00 xtx  . In

terms of final boundary condition, the following cases will be discussed in the following:
Case1, final time ft is given and random, namely, final state  ftx is random.

Augmented functional aJ is
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     



 


ft

t

T
fa dtxtuxHtxJ

0

,,,  (7.71)

One-order variation of augmented functional aJ is taken and ordered to be zero:

 























































ft

t

T
TTTTT

a dtxxHu
u
Hx

x
Hx

x
J

0

0


 (7.72)

In terms of partial integral method, the following expression can be known:

    xdtxxddtx ffff t

t

Tt

t

Tt

t

Tt

t

T  



0000

(7.73)

Equation(7.73) is replaced into equation(7.72) and expression   00 tx should be

noted. Then we can get

0
0



















 





























 



 




dtxHu
u
Hx

x
Hx

x
J f

f

t

t

TTT

tt

T

a 


 (7.74)

Since above variations x , u and  are both random, one-order variation aJ of

augmented performance index functional aJ is zero, namely the necessary condition of

that equation(7.57) gets extreme is as follows:
1) Positive equation

State equation:  








 tuxHx ,,, (7.75)

Adjoining(costate) equation:  
x

tuxH





 ,,,  (7.76)

2) Control equation:   0,,,





u
tuxH  (7.77)

3) Transverse equation:     
 f

f
f tx

tx
t







 (7.78)

We combine above positive equation and control equation to gain the optimal control
law  tu* , optimal state trajectory curve  tx* and optimal co-state trajectory curve  t* .

Example7.7 A state equation is as follows

   tutx 


Initial condition is
  00 xtx 

Please find optimal control law  tu* which make the following performance index is
minimum.

  0,
2
1

2
1

0

22   cdtutcxJ ft

tf

Solution:
This is optimal problem of that final time ft is given and that final state is free. For

UNDER PEER REVIEW

Malgwi
Highlight
flush left

Malgwi
Highlight

Malgwi
Highlight
flush left

Malgwi
Highlight

Malgwi
Highlight

Malgwi
Highlight



Chaper7 Optimal Control

- 401 -

the control variable is not constrained, variation method may be employed to solve optimal
problem. Constructing Hamilton function is

  uutuxH   2

2
1,,,

We can get from equation(7.76):

0
2
1 2 






 











uu
xx

H 

Hence, Const . In terms of transverse condition, we may gain:

    
       ff

ff

f
f tcxtcx

txtx
tx

t 












 2

2
1



From control equation, we achieve

0

 u
u
H

Namely,
 ftcxu  *

Expression *u is replaced into state equation, and we achieve

 ftcxux 


The solution of above differential equation is the following:
      00 txtttcxtx f 

When ftt  , the following expression may be acquired:

      00 txtttcxtx fff 

So that,

   
 0

0

1 ttc
txtx
f

f 


Optimal control law is

   
 0

0*

1 ttc
tcxtcxu
f

f 


Case2, final time ft is given and final state  ftx is constrained.

We postulate that the final constraint is
      0,  fff txMttxM (7.79)

Final state  ftx moves along the given boundary curve. Constructing augmented

functional aJ is

         

       







 













 





f

f

t

t

T
f

T
f

t

t

T
f

T
fa

dtxtuxHtxMtx

dtxtuxftuxLtxMtxJ

0

0

,,,

,,,,




(7.80)
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Here, RM , .

For augmented functional aJ , one-order variation is taken and ordered to be zero. The

deducing course is similar to that of case1. The following expression could be acquired
finally:

 

















 



















 



































f

f

t

t

TTT

tt

TT

a dtxHu
u
Hx

x
Hx

x
M

x
J

0

0




(7.81)
Since variations  ftx , x , u and  are random and interdependent, one-order

variation of augmented performance index functional aJ is zero, the necessary condition

that equation(7.57) can gain extreme is
1) Positive equation

State equation:  








 tuxHx ,,, (7.81)

Adjoining equation:  
x

tuxH





 ,,,  (7.82)

2) Control equation:   0,,,





u
tuxH  (7.83)

3) Boundary condition:   00 xtx  ,    0ftxM (7.84)

4) Transverse Condition:      

ftt

T

f x
xM

x
xt




























  (7.85)

Example7.8 A given state equation is as follows

   txtx 21 


,      tutxtx 


12

Initial condition is
  001 x ,   002 x

Final constraint condition is
    16343 21  xx

Please find optimal control law  tu* which make the following performance index is
minimum.

       
3

0

22
2

2
1 2

123
2
143

2
1 dttuxxJ

Solution:
This problem belongs to the optimal control problem of case2. Here, variation method

could be utilized to solve optimal solution of given problem for control variable  tu is
not constrained. Similarly, constructing Hamilton function is

  uxxtuH 21221
2

2
1  
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     22
2

1 23
2
143

2
1

 xx

    016343 21  xxM
Confirm relative equations in the following:

State equation: 

























 




ux
xH

x
xx

1

2

2

1



Adjoining equation: 

























 




1

2

2

1







x
H

Control equation: 02 

 u
u
H

Hence, solve above equations and we can gain their solutions:
tCtC sincos 211  tCtC cossin 212 

tCtCu cossin 21  ，   ttCttCtCtCtx cos
2

sin
2

sincos 12
541 

  ttCCCttCCCtx cos
22

sin
22

21
5

1
4

2
2 






 






 

From initial condition   001 x and   002 x , we can acquire:

04 C , 0
2
1

5 
CC

From final condition, the following expressions are gained:

  3cos
2
33sin

2
33sin3cos3 12541 CCCCx 

  3cos
2
3

2
3sin

2
3

2
13 2

1
51422 






 






  CCCCCCx

In terms of transverse condition, we can know

       
311

1



















ftt

f t
tx

M
tx

t 

namely,     3sin3cos433 2111 CCx  

       
322

2



















ftt

f t
tx

M
tx

t 

namely,     3cos3sin4233 2122 CCx  

Polynomials  31x and  32x are replaced into above equations, and then we can get

43sin3cos
2
3sin5

2
3cos5

5421  CCCC

243cos3sin3cos
2
5

2
13cos

2
13sin

2
5

5421 





 






  CCCC
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Constraint equation from final constraint condition     016343 21  xxM is

        163sin3cos43sin43cos3sin5.33cos63cos5.33sin6 5421  CCCC
Hence, the following equation group could be formed which unknown variables are
respectively 1C , 2C , 4C , 5C and  .

04 C , 0
2
1

5 
CC

43sin3cos
2
3sin5

2
3cos5

5421  CCCC

243cos3sin3cos
2
5

2
13cos

2
13sin

2
5

5421 





 






  CCCC

        163sin3cos43sin43cos3sin5.33cos63cos5.33sin6 5421  CCCC

Combine above equation group, and we can get the above solutions:
945.11 C , 08.22 C , 04 C , 9725.05 C , 2172.0

Hence, optimal control law acquired is
  tttu cos08.2sin945.1* 

Case3, final time ft is free and final state  ftx is constrained.

The augmented functional aJ is

         

       







 













 





f

f

t

t

T
f

T
f

t

t

T
f

T
fa

dtxtuxHtxMtx

dtxtuxftuxLtxMtxJ

0

0

,,,

,,,,




(7.86)

In equation(7.86), besides that time variable ft is free, others are completely the same

as that in equation(7.80). The necessary condition of optimal control problem is as follows:
1) Positive equation

State equation:  








 tuxHx ,,, (7.87)

Adjoining equation:  
x

tuxH





 ,,,  (7.88)

2) Control equation:   0,,,





u
tuxH  (7.89)

3) Boundary condition:   00 xtx  ,    0ff ttxM ， (7.90)

4) Transverse Condition:

     

ftt

T

f x
xM

x
xt




























  (7.91)

  0,,, 













 ftt

T

t
M

t
tuxH  (7.92)
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Example7.9 A given state equation is as follows

   tutx 


Initial condition is   00 xx  ; Final constraint condition is    ConstCtx f 0 .Please find

optimal control law  tu* which make the following performance index is minimum.

 










ft dtxxJ

0

2
2

Solution:
The method of solving optimal control problem is similar to previous given method.

Here, we also employed variation method to solve this example. Constructing Hamilton
function is the following:

  uuxuxxtuxH  


22
2

2,,,

   0tx ,    0, ff ttxM

State equation:

uHx 







Adjoining equation:

x
x
H 2








Control equation:

02 

 u
u
H

Combine control equation and adjoining equation to gain the following equation:


 ux
Above equation is replaced into state equation, and then we can know:

uu 


The solution of above second-order differential equation is
  tt eCeCtu  21

Then,
  tt eCeCtx  21 , tt eCeC  21 22

In terms of original condition and final constraint condition, we can get

021 xCC  , 021 CeCeC ff tt  

The solution of above equation group is

ff

f

tt

t

ee
exCC 






 00
1 ,

ff

f

tt

t

ee
exCC 


 00

2

Hence, optimal control law  tu* and optimal state equation  tx* are as follows:

UNDER PEER REVIEW

Malgwi
Highlight

Malgwi
Highlight
flush left

Malgwi
Highlight
flush left



Modern Control Theory

- 406 -

  t
tt

t
t

tt

t

e
ee
exCe

ee
exCtu

ff

f

ff

f













 0000* ,   t
tt

t
t

tt

t

e
ee
exCe

ee
exCtx

ff

f

ff

f













 0000*

7.5 Pontryagin’s Minimum Principle

In no constraint control, control law  tu is usually limited by any condition. However,

in practice, control law  tu is always constrained by a certain objective condition. The

control problem which control law  tu is limited is usually called to optimal control
problem with constraint. Minimum principle will be introduced and employed to solve such
optimal control problem in this section.

Minimum principle was put forward by Soviet expert Pontryagin in 1956. It was
deduced from variation method; hence its conclusions are similar to the results of
variation.However, there needs not to be Hamilton function for getting minimum,
minimum principle may be widely applied into practice.

7.5.1 Minimum principle of continuous system

We postulate that state equation of system is as follows

    ttutxfx ,,


,   00 xtx  (7.93)

In equation(7.93), nRx , pRu  ,  is closed set of boundary. Inequality
constraint is

     0,, ttutxG (7.94)
In equation(7.94), G is m -dimension continuously differential vector function, pm  .

System from original state 0x to final state  ftx requires that final state needs to satisfy

the equality constraint:
   0, ff ttxM (7.95)

Here, , M is q -dimension continuously differential vector function, nq  . Performance
index function is as follows:

       
ft

tff dtttutxLttxJ
0

,,, (7.96)

Optimal control is to find the optimally permissible control law  tu to make objective
functional J have minimum.

In order to convert above inequality constraint to equality constraint, the following
two variables are introduced:

1) Introduce a r -dimension control variable  t , and order,

   tut 


 ,   00 t (7.97)
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Though  tu does not continue,  t is continuous. If  tu is segmented and

continuous,  t is a smoothly continuous function.

2) Introduce another l -dimension variable  tz , and order

      ttutxGtz ,,
2





  ,   00 tz (7.98)

In spite of that  tz


is positive or negative,  
2





  tz is eternally non-negative. Hence,

it could satisfy the non-negative requirement. Through above transformation, inequality
optimal problem could be converted into equality optimal problem. Then we introduces
multipliers  and  by Lagrange multiplier method, above optimal problem will be
further converted into confirm the extreme problem of augmented performance functional

aJ .

     

     


























































































 




















f

f

t

t

TT

ff
T

ff

t

t

TT

ff
T

ffa

dtztxGxtxH

ttxMttx

dtztxGxtxftxL

ttxMttxJ

0

0

2

2

,,,,,

,,

,,,,,,

,,









(7.99)

Here, Hamilton function 





 

txH ,,,  is defined as follows:





















 

txftxLtxH T ,,,,,,,  (7.100)

In order to simplify above problem, Lagrange scalar function is defined as follows:







































 

 2

,,,,,,,,,,, ztxGxtxHtzxx TT 

(7.101)
Then, augmented performance functional aJ could be written into

       





 


ft

tff
T

ffa dttzxxttxMttxJ
0

,,,,,,,,  (7.102)

One-order variation of augmented performance functional aJ is exerted and then

gained:
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 

 







































































































































*

0

*
*

*

f

f
f

t

t

TTTT

f

tt

T
T

f
tt

T
a

dtz
z

x
x

x
x

tx
x
M

x
t

t
M

t
J








(7.103)

Here, *
ft is optimally final time. The backward three terms in above integrated term are

partially integrated respectively, and the following relationship is utilized:

      ffff ttxtxtx 


 * (7.104)

Then we can acquire

 

 
























































































































































































































*

0

*

*
*

*

f

ftt

fttf

t

t

TTTTT

f

TT

f

tt

T
T

a

dtz
zdt

d
dt
d

xdt
d

x
z

z

tx
xx

M
x

t
t
M

tx
xJ









(7.105)
According to the necessary condition of functional extreme, the following should be

found:
0aJ (7.106)

In equation(7.105), variations   zxtxt ff  ,,,, * are both random and

independent, hence the necessary condition that augmented performance functional aJ gets

extreme is the following:

0
*





















































ftt

T
T

t
M

tx
x  (7.107a)

0
*




































ftt

T

xt
M

x
 (7.107b)

0
*
























ftt
, 0

*
























fttz
(7.107c)

0










xdt
d

x
(7.107d)

0





dt
d , 0






zdt
d (7.107e)

From equation(7.101), gain
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















 T

x
G

x
H

x
, 






x
Above is substituted into equation(7.107d) and then we can acquire:
















T

x
G

x
H

dt
d (7.108a)

Namely,
















 T

x
G

x
H

dt
d (7.108b)

If there is no state variable x in inequality constraint functionG ,
   0, ttuG

we can get the following expression from equation(7.108b) for 0


x
G

x
H






 (7.109)

From equation(7.107a) and equation(7.107b) and 





x
, we can calculate the

value and H when *
ftt  :

 
*

*

ftt

T

f t
M

x
t


























  (7.110)

 
*

*

ftt

T
f t

M
t

tH















  (7.111)

When system state under optimal control  tu* is transformed along optimal

trajectory  tx* , the asterisk(*) of optimal time *
ft can be neglected from equation(7.110)

and equation(7.111). And then we can get transverse condition:

 
ftt

T

f t
M

x
t


























  (7.112)

  0,,, 













 ftt

T

t
M

t
tuxH  (7.113)

Expression(7.107e) demonstrates that derivatives 






and 





z
are constant along

optimal trajectory line. From equation(7.107c), it is known that these constants are zero;
hence optimal trajectory curve is

0










z
(7.114)
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Since Lagrange function includes variables


x ,


 and


z , if variables


x ,




and


z in the extreme curve could be respectively expressed by optimal variables
*
x ,

*



and
*
z , equation(7.114) can be expressed as follows:

0** 










z
(7.115)

Above content is the necessary condition that performance index functional aJ gets

extreme. Besides above necessary conditions, we need to confirm its sufficient condition:
Weierstrass function is non-negative function along optimal trajectory curve, namely:

0,,,,,,

,,,,,,

,,,,,,

,,,,,,,,,,,,

*
*

***

*
***

***
**

***

*

*

**
***

****


































 













































 













txHtxH

xtzxxx

tzxx

xx
x

tzxxtzxxE

TT

T









(7.116)

Expressions    tut 


 ,    tut *
*




 is replaced into above expression and then gain:

   tuxHtuxH ,,,,,, *****   (7.117)

Lagrange function expression is substituted into 0






, and gain:

0
























T
GH


(7.118)

If the expression    tut 


 is noted, the following expression can be gained:

0











 T

u
G

u
H (7.119)

After we summarize above deduction, the following famous minimum principle can
be achieved.

Principle of the Minimum Assume the state equation of system is as follows:

    ttutxfx ,,


,   00 xtx  (7.120)

Control  tu is a segmented and continuous function with the first discontinuity point,
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which belongs to the p -dimension boundary set and furthermore satisfy the following
inequality:

     0,, ttutxG (7.121)

In the case of unknown final time ft , system state  tx satisfy the boundary condition:

   0, ff ttxM (7.122)

Furthermore system state could be transformed from original state  0tx to final state  ftx
and make the following performance index functional have minimum.

       dtttutxLttxJ ft

t fff 
0

,,, (7.123)

Then optimal control  tu* , optimal trajectory  tx* and optimal adjoining vector

 t* have to satisfy the following conditions:
Assume that Hamilton function is the following:

     tuxftuxLtuxH T ,,,,,,,   (7.124)

1) Satisfy canonical equation along optimal trajectory curve  tx*





 Hx (7.125)
















 T

x
G

x
H (7.126)

Here, sign is Lagrange multiplier vector which is not related to time t and which
dimension is the same as that of inequality constraint functionG . If inequality constraint
function G does not include state variable x , then we have

   0, ttuG (7.127)

x
H






 (7.128)

2) Transverse condition and boundary condition

 
ftt

T

f x
M

x
t


























  (7.129)

  0,,, 


























 ftt

T

t
M

t
tuxH  (7.130)

  00 xtx     0, ff ttxM (7.131)

3) In optimal trajectory  tx* , the Lagrange functionH corresponding to optimal

control  tu* can get absolute minimum, namely:

   tuxHtuxH
u

,,,min,,, ***** 


 (7.132)

Or written into
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   tuxHtuxH
u

,,,min,,, ***** 


 (7.133)

Furthermore, the following equation is always found along optimal trajectory curve  tx* :













 T

u
G

u
H (7.134)

Above minimum principle is also called to maximum principle for some engineering
problem requires that performance indexes is maximum. Then, so long as the sign L in
Hamilton functionH is changed into L and adjoining vector changes its sign and
furthermore Hamilton functionH is maximum, minimum principle can become maximum
principle.

Example7.10 A given state equation is as follows

uxx 


,   50 x

Control constraint condition: 1
2
1

 u .

Please find optimal control law  tu* which makes the following performance index is
minimum.

  
1

0
min dtuxJ

Solution: This is a permissible control problem which final state is free.
1) Construct Hamilton function
From equation(7.124), the Hamilton function H could be written out:

   uxuxfLH T  

Obviously, the Hamilton function is linear function of control variableu . Derivative



 1
u
H is not related to control variableu . In terms of minimum principle, finding

minimum of Hamilton functionH is equivalent to finding the minimum of functional J ;
this requires that the expression  u1 is minimum.

Given constraint of control variableu : 1
2
1

 u .

Hence, when 1 , the upper bound of control variableu : 1* u ;

when 1 , the lower bound of control variableu :
2
1* u .

2) Find adjoining vector  t to confirm the converting point.
From co-state equation(7.128), we can know:

 






1
x
H

Namely, 1




The solution of above differential equation is:   tCet  1 .

UNDER PEER REVIEW

Malgwi
Highlight

Malgwi
Highlight

Malgwi
Highlight
flush left

Malgwi
Highlight
flush left

Malgwi
Highlight
flush left

Malgwi
Highlight
flush left

Malgwi
Highlight



Chaper7 Optimal Control

- 413 -

When 1ft ,     01   ft , eC  ; hence,   11  tet .

Ensure the converting point:
We order 1 , and then can get: 307.021  Int .
When 1 ( 307.0t ), 1* u .

When 1 ( 307.0t ),
2
1* u .

3) Acquire optimal state trajectory curve  tx*

Given system state equation: uxx 


The solution of above state equation is: teCux 1 .

When 307.00  t , 1* u ; hence teCx 11 .On consider   50 x , we can get the

optimal state trajectory curve:   tetx 41*  .

When 1307.0  t ,
2
1* u ; hence teCx 22

1
 . For first segment value of system

state   438.6307.0 x is the original value of second segment of state curve, we can

achieve the optimal state trajectory curve:   5.0368.4*  tetx .

4) Confirm minimum functional  ** uJJ  .

     

    684.81368.424

5.01
1

307.0

307.0

0

1

307.0

307.0

0

1

0

*







dtedte

dtxdtxdtuxJ

tt

7.5.2 Minimum principle of discrete system

The method of finding the optimal control in discrete system is similar to that in
continuous system, which corresponding relationship is provided in table7.2.

Example7.11 A given state equation of discrete system is as follows

     kukxkx 


















1.0
0

10
1.01

1

Control boundary condition is as follows:

   
  



















0
1

0
0

0
2

1

x
x

x ,    
  



















0
0

2
2

2
2

1

x
x

x

Please find optimal control sequence  ku* and optimal state sequence  kx* which
make the following performance index is minimum.

 



1

0

205.0
k

kuJ

Solution:
1) Construct Hamilton functionH
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Table7.2 Comparing table of Minimum principle between discrete and continuous systems
Minimum principle of continuous

system
Minimum principle of discrete system

System     ttutxfx ,,


,

  00 xtx 

      kkukxfkx ,,1 

  00 xx  , Nk ,,1,0 

Performance index   
    dtttutxL

ttxJ
ft

t

ff




0

,,

,   

    





1

0
,,

,
N

k
kkukxL

NNxJ 

Extreme problem Find optimal control  tu*

which makes functional J have
minimum.

Find optimal control
  12,1,0,*  Nkku  which

makes functional J have minimum.
Method features Cite adjoining vector  t Cite adjoining vector

sequence   Nkk ,2,1,0, 
Hamilton function  

   tuxftuxL
tuxH
T ,,,,

,,,






      
      

12,1,0
,,1

,,






Nk
kkukxfk

kkukxLkH
T




Canonical equation

x
HHx












,    

 

   
 

1,1,0

1
1












Nk
kx
kHk

k
kHkx







Extreme
condition( unconstraint

control )

0


u
H  

  12,1,0, 

 Nk

ku
kH 

Extreme
condition( constraint

control )

 
 tuxH

tuxH
,,,min

,,,
**

***








      
      

1,2,1,0

,1,,min
,1,,

**

***









Nk

kkkukxH
kkkukxH







Transverse condition
(final state is free and
final time is given)

   ff tx
t







When    0, ff ttx ,

  0ft

   NxN






When    0, NNx ,   0N

             
        kBukAxkku

kkukxfkkkukxLkH
T

T





105.0
,,1,,

2 



Adjoining equation is as follows:

   
   1




 kA
kx
kHk T
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Control equation is
 
      011.0 


 kBku

ku
kH T

Hence, control law expression  ku can be achieved:

       kkABku TT  11.010  

When 0k ,    10  TA

             

 1
1.00
00

0
1

01000100001
























  TTT BBAxABBAxBuAxx

When 1k ,    21  TA

         
     

   

   
   


































































12.0101.0
101.01

1
2.001.0
01.00

0
1

1
1.001.0
00

1
1.00
01.00

0
1

1101100
1101112

21

2

2











TTT

TT

AABBABBxA
ABBAxBuAxx

Boundary condition is the following from given information in this example:

   
  



















0
0

2
2

2
2

1

x
x

x

Then we can get
  0101.01 2   ,     012.0101.0 21  

The solution of above equation group is
    100120001 21   ，

Hence,

    


























300
2000

100
2000

11.0
01

10  TA

    




























10
1

1
1.00
00

0
1

1 x

      100011.00  u

      100111.01  u
Relative results are listed as follows:

   
  



















0
1

0
0

0
2

1

x
x

x ,    
  




















10
0

1
1

1
2

1

x
x

x ,    
  



















0
0

1
1

2
2

1

x
x

x

  









300
2000

0 ,   









100
2000

1 ,   1000 u ,   1001 u
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7.6 Bang-bang Control(Switching Control)

It’s very convenient to utilize minimum principle to solve optimal control; however
it’s very difficult to give out specific control law  tu* . In the following paragraphs, a kind
of special case will be discussed. In this case, all components of control vector can get the
boundary value of control field; and furthermore they could be continuously switched from
one boundary value to another boundary value; and then a strongest control will be formed
and constructed. Such control is called to switch control. If such control is simulated and
visualized, such control is also called to Bang-bang control. Time optimization is a classical
example of Bang-bang control. For the performance indexes of such control is very simple
and studied earlier, relative research results is very abundant and prolific.

For non-linear system, system state equation is as follows:

       
 










00

,,
xtx

tuttxGttxfx (7.135)

In equation(7.135), iii bua  . Find the optimal control law  tu* to make the following

performance index function have minimum.

            
ft

t

T
ff dttuttxhttxttxJ

0

,,,  (7.136)

Above optimal problem has the following features:
(1) given state equation is nonlinear for system state vector  tx in equation(7.135);

but for control vector  tu shows linear relationship. Such system is called to nonlinear
radiation system.

(2) the relationship between aim function and control variable  tu in equation

(7.136). For the derivative of Hamilton function to input control variable  tu causes that

there is no control variable  tu in the derivative equation, the relationship among control

law  tu , system state  tx and adjoining vector  t can not be gotten from coupling
equation.

(3) Control law  tu is limited.
In order to solve such optimal control problem, now let’s firstly define Hamilton

function:
                         tuttxGttxfttuttxhttxtttutxH TT ,,,,,,,  

(7.136)
Since Hamilton functionH is linear for control law  tu , minimum requirement of

Hamilton function to control law  tu is as follows:

        
        








0,,
0,,

i
TT

i

i
TT

i
i ttxGtttxhb

ttxGtttxha
u




(7.137)
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Obviously, control law  tu linearly appears in system and performance indexes. If
each component of control vector is boundary, such control is Bang-bang control.

Only when the following expression is found
        0,,  ttxGtttxh TT  (7.138)

Hamilton function will not be the function of control law  tu . And it will not have

minimum for control law  tu .
For Bang-bang control problem, there are the following state equation and adjoining

equation:
State equation:

       tuttxGttxfHx ,, 







(7.139)

Adjoining equation:

                      t
x

tuttxGt
x

ttxftu
x

ttxh
x

ttx
x
Ht

TTT
























 ,,,,

(7.140)
In equation(7.140), control law  tu is decided by equation(7.137).

Above state equation, adjoining equation and boundary condition constitute two
boundary value problem together; this is a problem solved difficultly. Here, we only
consider a kind of special case namely shortest time problem.

Assume that the state equation of controllable linear time-constant control system is as
follows:

     tButAxtx 


(7.140)

State constraint condition:   00 xtx  ,   0ftx , final time ft is not certain.

Performance index function:


ft

u
dtJ

0
min (7.141)

Control constraint condition:
  ritui ,,2,11  (7.142)

Search optimal control  tu* to make that system state can be transformed in shortest

period from original state  0tx to original point   0ftx .

Here,      0,, ttutx and      1,, ttutxL ; hence Hamilton function is

           TTTTT BuAxtButAxttutxH  11,,, (7.143)
In order to make that Hamilton function H is globally minimum, it’s known that

optimal control is as follows:
    tBSGNtu T* , or,      ritBtu i

T
i ,,2,1,sgn*   (7.144)

Here, sgn is sign function which is defined as
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












01
00
01

sgn





 (7.145)

When  is vector, sign function is expressed by SGN.
Canonical equation group:

 TA
x
H








(7.146a)

     tButAxHtx 







(7.146b)

Solve and gain:

   0 tATet  (7.147)

Here,   00   , it is a non-zero vector. Otherwise, there will be a wrong result.

Equation(7.147) is replaced into equation(7.144), and then achieve the following
equation:

   0* tAT T

eBSGNtu  (7.148)

Apparently, optimal control of time is switch control (Bang-bang control). Optimal
control of time requires that control variable only gets boundary value(maximum value) but
have opposite sign with adjoining vector  t .

Now let’s discuss the uniquity of time optimal control and switch degree.
Theorem For linear time-constant system   CBA ,, , if there is time optimal

control  tu* , such control   ritui ,,2,1,  is unique.

Demonstration Here we employ proof of contradiction to prove the theorem.
Assume that there have two control vectors 1u and 2u , 21 uu  ; but they can be

transformed in the shortest time from original state  0tx to original point  ftx .

In terms of minimum principle, 1u and 2u can both make that Hamilton H is
globally minimum; they are that one is greater, another is lower, or they are equal. Now
assume that 1u can make H be less. From equation(7.143), we can gain:

         tButAxetButAxe AtTAtT
2010 11   

Namely,
   tBuetBue AtTAtT

2010
   (7.149)

On the other hand, in the viewpoint of state equation solution, there is

         dBuexetx ft tAAt
101 0  

         dBuexetx ft tAAt
202 0  

When ftt  , system state vectors  tx1 and  tx2 are both converted into original
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point; namely,     021  ff txtx . Then we have

          dBuedBue f ff f
t tAt tA

2010   

For   ff AtAt ee 


1
, above equation can be simplified into

      dBuedBue ff t At At
2010   

After variable is substituted, we can gain:

   dttBuedttBue ff t Att At
2010   

Adjoining vector value T
0 is multiplied into the both sides of above equation.

   dttBuedttBue ff t AtTt AtT
20 010 0     (7.150)

Inequality(7.149) is the condition of ensuring that Hamilton functionH is minimum,
and equation(7.150) is the condition of requiring that final state is zero. For these two
equations have to been satisfied, there is

   tBuetBue AtTAtT
2010

   (7.151)

In the case of that given system   CBA ,, is controllable, only possible case is

as follows:
   tutu 21  (7.152)

Above equation(7.152) demonstrates that control vector  tu is unique. Above
theorem has been proved.

Theorem For linear time-constant system   CBA ,, , if there is time optimal

control  tu* which satisfies riui ,,2,1,1  , and if all eigenvalues of system

matrix A are both real, each control   ritui ,,2,1,  is Bang-bang control, and

furthermore the most degree between two boundary values is 1n .
If all eigenvalues of linear time-constant system is non-positive real, control law  tu

is permissible control; there must have optimal control of time.
Example7.12 A given state equation of linear time-constant system is as follows

   

   












tutx

txtx

2

21

Control constraint condition is as follows:
  1tu

Please find optimal control  tu* which makes system be transformed from original

state  0x to original point.
Solution:
From the given information of this example, we can write out performance index
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functional J :

f

t
tdtJ f

 0
Construct Hamilton functionH :

  uxfLtuxH T
2211,,,  

From minimum principle, we can achieve adjoining equation:

 
   

























 




tx
H

t

t
12

1 0




Then the solution of above differential equation group is as follows:
 
  


















tCC

C
t
t

12

1

2

1




The optimal control which make Hamilton functionH have minimum is
      tCCttu 122

* sgnsgn  

  0ftx

For   1tu , above optimal control are divided into two cases for discussion:

1) when   1tu ,

   

 












12

21

tx

txtx

The solution of above differential equation group is as follows:

   022 xttx  ,      00
2 12

2

1 xtxttx 

Eliminate time variable t to gain:

       
2
00

2

2
2

1

2
2

1
xxtxtx 

The optimal trajectory in phase plane can be described as the following expression:

    ctxtx 
2

2
2

1

2) when   1tu ,

   

 












12

21

tx

txtx

The solution of above differential equation group is as follows:

   022 xttx  ,      00
2 12

2

1 xtxttx 

Eliminate time variable t to gain:

UNDER PEER REVIEW

Malgwi
Highlight
flush left

Malgwi
Highlight
flush left



Chaper7 Optimal Control

- 421 -

       
2
00

2

2
2

1

2
2

1
xxtxtx 

The optimal trajectory in phase plane can be described as the following expression:

    ctxtx 
2

2
2

1

Above analysis demonstrates that the optimal trajectory of system is two bundles of
parabola shown in figure7.1.

Figure7.1 Optimal trajectory bundle
The two curves through original point is the following:

        1,0,
2
1

2
2
21  tutxtxtx

        1,0,
2
1

2
2
21  tutxtxtx

Two curves of parabola through original point is called to switch curve which equation
may be expressed as:

     txtxtx 221 2
1



7.7 Linear Quadratic Optimal Control

If a control system is linear, and if performance functional is the quadratic function
integration of state variable or control variable; such control problem is called to linear
quadratic regulator problem, which is shortened to LQR (Linear Quadratic Regulator,
LQR)problem. Such optimal control problem is very widely applied and an important result
of modern control theory. Control law solved from linear quadratic problem is linear
function of state variable; hence closed-loop optimal control can be realized through state
feedback.

In this section, we firstly discuss linear quadratic functional, then regulator and
follower.
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7.7.1 Linear Quadratic Optimal Control Problem

Assume that linear system is as follows:

         tutBtxtAtx 


,   00 xtx  (7.153)

The system state is completely controllable. Among equation(7.153), state vector
nRx ; control vector pRu ; matrices A and B are respectively nn and pn

matrices.
Performance index of optimal control is the linear quadratic function of state vector

and control vector, which can be expressed as

         

                  dttutRtutxtxtQtxtx

txtxPtxtxJ

ft

t

T
d

T
d

fdf
T

fdf

 



02
1
2
1

(7.154)

Among equation(7.154), desired system state  txd ,  fttt ,0 represents desired

state trajectory; weighting matrices P and Q is positive semidefinite matrix; R is
positive symmetric matrix.

Above problem is called to linear quadratic optimal control problem.
Linear quadratic performance index in equation(7.154) has the following physical

significance.
The first term represents the requirement of stable error. Weighting matrix P shows

the attention degree on each state error.What we need to note is that stable error is smallest,
not zero. Stable error should accord with the need of practical engineering. Coefficient 0.5
has no any physical and mathematical significance for deductive convenience.

The second term shows total tolerance of that actual state deviates from ideal state in
the whole control course. Weighting matrix Q demonstrates the attention degree of each
component of state vector. The third term reflects the cost of control, and represents the
total control energy which is consumed in the whole control course.

LQR regulator problem means that control law designed may make system state return
zero state in the proximity to satisfy that quadratic aim function is minimum.

In LQR problem, the specific means of realizing relative control is not pointed out
clearly. Only a controller needs to be designed to make performance indexes reach
minimum.

7.7.2 Finite time state regulator of linear continuous system

The task of state regulator is that system state keeps each components close to
balancing state in the case of no overmuch energy cost when system state deviates from its
stable state. When such problem is studied, original state vector is usually regarded as
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disturbance, and zero state is regarded as balancing state. Then regulator problem is
converted into searching for optimal control law u in the limited time  ftt ,0 to make

system be converted from original state to zero state in the proximity. Furthermore,
regulator should make functional J get minimum.

We postulate that the state space of linear time-variant system is depicted as follows:

         
     
  00 xtx

txtCty
tutBtxtAtx







(7.155)

In above expression, yux ,, are respectively mrn ,, dimension vectors.

Time-variant matrix  tA is nn system matrix; matrix  tB is rn control matrix;

matrix  tC is nm output matrix.
Quadratic performance index functional of equation(7.155) is as follows:

                dttutRtutxtQtxtPxtxJ ft

t

TT
f

T
f  

02
1

2
1 (7.156)

Here, weighting matrix P is positive semidefinite and symmetric constant matrix;
 tQ is positive semidefinite matrix.  tR is positive and symmetric matrix;each element

in matrices  tQ and  tR is continuously boundary for time.
Above optimal problem is called to finite time regulator problem. We may employ

minimum principle to solve it. Now let’s construct Hamilton function:

                        tutBtxtAttutRtutxtQtxtuxH TTT  
2
1

2
1,,, (7.157)

Then we can get the following canonical equation:

         tutBtxtAHtx 







(7.158a)

         ttAtxtQ
x
Ht T  






(7.158b)

For the control law  tu is free, the following minimum condition will be satisfied:

        0

 ttBtutR
u
H T  (7.159)

We can achieve the solution of above equation:
       ttBtRtu T 1*  (7.160)

The second derivative of Hamilton to control law is as follows:

  02

2



 tR
u
H (7.161)

Hence, performance index functional J should get minimum. Equation(7.160) is
replaced into canonical equation (7.158) and then gain:

             ttBtRtBtxtAtx T 1


 (7.162)
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         ttAtxtQt T  


(7.163)
Above equations are obviously one-second linear differential equation group.

According to transverse condition which final state is free and which final time is given, its
boundary condition and transverse condition is:

  00 xtx  (7.164)

           fff
T

ff
f tPxtPxtx

txtx
t 













2
1 (7.165)

Since final system state  ftx and final adjoining vector have linear relationship in

above transverse conditions, and furthermore since canonical equation is also linear, we can
postulate that there is possibly the following linear relationship between system state  tx
and adjoining vector  t at any time  fttt ,0 :

     txtKt  (7.166)

Here, coefficient matrix  tK is undetermined nn matrix. Equation(7.166) is
differentiated and then we can get:

         txtKtxtKt


 (7.167)
Equation(7.162) and equation(7.166) are both replaced into equation(7.167), achieve:

                   txtKtBtRtBtKtAtKtKt T




  


1 (7.168)

Equation(7.166) is substituted into equation(7.163) and we can know:

          txtKtAtQt T


 (7.169)
Order that equation(7.169) is equal to equation(7.168), we can achieve:

                            txtKtAtQtxtKtBtRtBtKtAtKtKt TT 



  


1 (7.170)

Above equality is always found for any system state  tx . Hence, we have the
following equation:

                     tKtAtQtKtBtRtBtKtAtKtK TT  


1 (7.171)
Namely,

                     tQtKtAtAtKtKtBtRtBtKtK TT  


1 (7.172)
Expression(7.172) is called to Riccati matrix differential equation which is a

first-second nonlinear matrix differential equation in nature.
After comparing equation(7.165) with equation(7.166), we easily find that the

boundary condition of equation(7.172) is the following:
  PtK f  (7.173)

Matrix  tK which can satisfying equation(7.172) and equation(7.173) should be
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symmetric when  fttt ,0 . Namely,

   tKtK T (7.174)
Equation(7.174) is proved as follows:
Equation(7.172) and equation(7.274) are transposed and gain:

                     tQtAtKtKtAtKtBtRtBtKtK TTTTTT
T

 


1

  PtK f
T 

It is easily known that matrix  tK and matrix  tK T are both the solution of
equation(7.172) for same boundary condition; hence according to the uniqueness of
solution in equation(7.172), we can easily know:

   tKtK T 

The undetermined matrix  tK is symmetric matrix.

After we gain the solution  tK from above Raccati equation(7.172), the optimal

control law  tu may be achieved from equation(7.160):

         txtKtBtRtu T1*  (7.175)
Equation(7.175) is replaced into equation(7.155), and then we have

              txtKtBtRtBtAtx T1


 ,   00 xtx  (7.176)

Obviously, the solution of above linear differential equation is the optimal
solution  tx* of system state.

Then, we firstly calculate and confirm the optimal value of performance index
functional J .

Optimal control law  tu* and optimal state  tx* is substituted into performance
index functional, and we can get that the minimum of performance index function is as
follows:

     000
*

2
1 txtKtxJ T (7.177)

Proof
Differentiate expression      txtKtxT and then we can get the following expression:

                        txtKtxtxtKtxtxtKtxtxtKtx
dt
d TT

T
T





Derivative


x from system state equation is replaced into above equation, and  tK


is also substituted into above equation by Riccati matrix differential equation. And then we
can gain:

     KxBRuRKxBRuRuuQxxKxx
dt
d TTTTTT 11  

When  tu and  tx are equal to optimal functions  tu* and  tx* , have
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  ****** RuuQxxKxx
dt
d TTT



Integrate above equation from 0t to ft and multiply them by 0.5,

    






 ff t

t

TTt

t

T dtRuuQxxdtKxx
dt
d

00

******

2
1

2
1

Namely

    
ff t

t

TTt

t
T dtRuuQxxKxx

0
0

******

2
1

2
1

Above equation is replaced into equation(7.156), and then gain

        

     

     0*
00

*

****

******
0

**

2
1

2
1

2
1

2
1

2
1

0

0

txtKtx

tKxtxKxx

tKxtxdtRuuQxxtxJJ

T

ff
Tt

t

T

ff
Tt

t

TT

f

f





 

Obviously, at any time, performance functional is

        txtKtxtxJJ T ****

2
1



When ftt  ,

            ff
T

fff
T

f tPxtxtxtPtxtxJJ ******

2
1

2
1



Theorem The given state equation of linear time-variant system is as follows:

         tutBtxtAtx 


，   00 xtx 

Quadratic performance index functional is the following:

                dttutRtutxtQtxtPxtxJ ft

t

TT
f

T
f  

02
1

2
1

In this equation, control variableu is not constrained; final time ft is definite; and

weighting matrices P and Q are positive semidefinite matrices; matrix R is positive

symmetric matrix; then optimal control law  tu* always exists and is unique, and
furthermore it can be determined by the following formula:

         txtKtBtRtu T1* 

Optimal system state  tx* is the solution of the following equation:

              txtKtBtRtBtAtx T1


 ,   00 xtx 

The minimum of performance index functional is

     000
*

2
1 txtKtxJ T
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Several points need to be explained on above results:
1) Optimal control law is a linear state feedback, hence it’s very convenient to realize

closed-loop optimal control.
2) If control time period  ftt ,0 is definite and if matrix  tK is time-variable,

optimal control system is linear time-variant control system.
3)  tK is the solution of nonlinear differential equation; generally it is very difficult

to solve the analytic solution. Hence, numerical solution of matrix  tK could be calculated
by computer.

4) We should note that there is no controllable requirement of system in the finite
time state regulator of linear continuous system.

Example7.13 A given state equation of linear time-constant system is as follows

     tButAxtx 


,   00 xtx 

Performance index functional is

          dttRututxtQtxJ ft

t

TT 
02

1

Relative matrices are as follows:











00
10

A , 









1
0

B , 









00
01

Q , 1R

Please find optimal control  tu* .
Solution:
We assume that positive and symmetric matrix is the following:

     
   








tktk
tktk

tK
2221

1211

Above matrix could satisfy the following Riccati matrix differential equation:

                     tQtKtBtRtBtKtKtAtAtKtK TT  


1

  



















































































00
01

10
1
0

01
00

00
10

2221

1211

2221

1211

2221

1211

2221

1211

2221

1211

kk
kk

kk
kk

kk
kk

kk
kk

kk
kk

Namely,





























2
2212221211

221211
2
12

2221

1211

2
1

kkkkk
kkkk

kk
kk

We can get the following linear algebraic equation group:

























2
221222

22121112

2
1211

2

1

kkk

kkkk

kk
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Final boundary condition is   0 PtK f . We utilize computer to solve above

differential equation and gain the value of matrix  tK from 0t to ftt  . Then we can

get optimal solution:

       
   

 
         txtktxtk
tx
tx

tktk
tktk

tu 222112
2

1

2221

1211* 10 

















7.7.3 Infinite time-constant State regulator of linear continuous

system

Assume the state equation of linear time-constant system is the following:

     tButAxtx 


,   00 xtx  (7.178)

In equation(7.178), matrices A and B are respectively nn and pn constant
matrices.

Postulate that system   BA, is completely controllable, state vector nRx , and

that control vector  tu is not constrained. Quadratic performance index functional is

        



02

1
t

TT dttRututQxtxJ (7.179)

Here, weighting matrices Q and R is constant matrix, Q is positive semidefinite ,

and R is positive and symmetric matrix. Control law  tu is free. Require that optimal

control  tu* needs to be confirmed to make performance index functional have
minimum.

Comparing with previous state regulator with limited time, indefinite time-constant
regulator has the following characteristics:

1) system is time-constant, and weighting matrix in performance index functional J
is constant matrix;

2) Final time tends to infinity . In infinite time time-constant regulator, that the final
time ft has a tendency toward infinity is to get a constant feedback matrixK .

3) Final weighting matrix 0P , namely there is no final performance requirement.
This is because final performance will lose the engineering significance when final time ft

tends to infinity.
4) Requiring that system is completely controllable is to guarantee the stability of

optimal system. When control area is infinite, system performance index tends possibly to
infinity based on any control if system is not completely controllable. Then the advantages
and disadvantages of control performance will not be compared to ensure the optimal
control of system.
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5) Closed-loop control system is asymptotically stable, namely all characteristic roots
of system matrix  KBBRA T1 have negative real.

Assume that Lyapunov’s function is the following:

     tKxtxxV T

Lyapunov’s function  xV is positive definite for matrixK is positive definite.

 


 xKxKxxxV T
T

Equation(7.176) is replaced into above equation, and then we can achieve:

      
  
 xKBKBRQx

xKBKBRKBKBRKAKAx
xKBBRAKxKxKBBRAtxxV

TT

TTTT

TTTTT

1

11

11














For matrixQ and matrix R is positive definite, derivative  xV


is negative definite.

Conclusion5) is proved. In practice, if  xV


is not eternally equal to zero, matrixQ may
be positive semidefinite.

TheoremAssume linear time-constant system is the following:

     tButAxtx 


,   00 xtx 

This system is completely controllable, and quadratic performance index functional is

        



02

1
t

TT dttRututQxtxJ

Here, weighting matrices Q and R is constant matrix, Q is positive semidefinite

and symmetric matrix, and R is positive and symmetric matrix. Control law  tu is free.

Then optimal control law  tu* always exists and is unique, which is decided by the
following expression:

   tKxBRtu T1*  (7.180)
Here, matrix K is nn positive symmetric constant matrix, it is the unique solution

of the following Riccati matrix algebraic equation:
01   QKBKBRKAKA TT (7.181)

Optimal state  tx* is the solution of the following differential equation:

     txKBBRAtx T1


 ,   00 xtx  (7.182)

The minimum of performance index functional is as follows:

   00
*

2
1 tKxtxJ T (7.183)

Example7.14 A given state equation of linear time-constant continuous system is as
follows
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uxx 




















1
0

00
10

Performance index functional is

 dtuaxxbxxJ 



0

2
221

2
1 2

2
1

Please find optimal control  tu* when functional J gets minimum.
Solution: In terms of performance index functional and system state equation,the

following matrices may be known:











00
10

A , 









1
0

B , 









ab
b

Q
1

, 1R

In order to make that matrixQ is positive definite, the following inequality needs to
be always found:

02 ba
Judge whether given system is completely controllable.

  2
01
10









 rankABBrankrankSc

Hence, given system is completely controllable. Optimal control  tu* always exists
for matrix Q and matrix R is positive definite.

       
     txktxk
tx
tx

kk
kk

tKxBRtu T
222112

2

1

2212

12111* 101 















 

21k and 22k is the solution of the following Riccati differential equation:

01   QKBKBRKAKA TT

  











































































00
001

10
1
0

01
00

00
10

2212

1211

2212

1211

2212

1211

2212

1211

ab
b

kk
kk

kk
kk

kk
kk

kk
kk

Namely,






















00
00

2
1

2
2212221211

221211
2
12

akkbkkk
bkkkk

Develop and then gain the following algebraic equation group:

02

0
01

2
2212

221211

2
12






akk

bkkk
k

The solution of above equation group is as follows:

112 k , akk  1222 2 , bkkk  221211

After considering positive definite matrixK , we can get:

112 k , ak  222 , bak  211
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












21

12
a

baK

Hence, optimal control  tu* can be gained:

       
     txatx
tx
tx

a
batKxBRtu T

21
2

11* 2
21

1210 



















 

The state equation of closed-loop system is the following:
System matrix:

  






































 

21
10

21
1210

1
0

00
101

aa
baKBBRA T

State equation:

x
a

x 












21
10

State feedback transfer function of closed-loop system:

    
12

1
2

1


 

ass
BBKAsECsG

Poles of closed-loop system are as follows:

2
2

2
2

2,1
ajas 




 (when 2a )

7.7.4 Output regulator of linear continuous system

In the above sections, we have discussed the design problem of state regulator. The
performance index functional of state regulator requires that weighting square sum of all
states of that system deviates from balancing point is minimum. However, plenty of
optimal control problems in practice do not emphasize all states of system but only have
the requirement on the output of control system. When people utilizes state equation to
describe a physical system, they difficultly give out specific requirement on all system
states; furthermore a lot of system variables don’t have any physical significance possibly.
But people can put forward specific requirement on system output. Hence, it’s very
significant to put forward relative requirement on system output to construct the
performance index functional of optimal control system.

In this section, we will solve output regulator problem of linear continuous system.
1. Finite time output regulator
We postulate that linear time-variant system is as follows:

         tutBtxtAtx 


,   00 xtx  (7.184a)

   txtCy  (7.184b)
The performance index functional for finite time output regulator is the following:
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                dttutRtutytQtytPytyJ ft

t

TT
ff

T  
02

1
2
1 (7.185)

In above equation, control law  tu is not limited and final time ft is given; time-variant

matrices      tCtBtA ,, are continuous boundary function on time variable; weighting

matrix P is positive semidefinite and symmetric constant matrix; weighting matrices  tQ ,

 tR are respectively positive semidefinite and positive definite symmetric matrices which
each element is continuously boundary on time variable.

Please find optimal control  tu* make that performance index functional J has
minimum.

In order to solve such problem, we should firstly transform it into equivalent problem
of state regulator; and then we may utilize the previous result of state regulator to solve
optimal control law  tu* .

Expression in equation(7.184b) is replaced into equation(7.185), and then we achieve:

                

                        dttutRtutxtCtQtCtxtxtPCtCtx

dttutRtutytQtytPytyJ

f

f

t

t

TTT
ff

T
f

T

t

t

TT
ff

T









0

0

2
1

2
1

2
1

2
1

(7.185)

Comparing with equation(7.156), we may find that weighting matrices P and  tQ
have been changed. New weighting matrices are marked as:

   ff
T tPCtCP  ,        tCtQtCtQ T (7.186)

Then relative performance index functional J is the following:

                dttutRtutxtQtxtxPtxJ ft

t

TT
ff

T  
02

1
2
1 (7.187)

After comparing equation(7.187) with equation(7.156), we easily know that if

matrices P and  tQ are positive semidefinite matrix, the method of solving state

regulator may be utilized to solve optimal control  tu* of output regulator.

If matrices P and  tQ are symmetric matrix, matrices P and  tQ are also

symmetric.If system is observable, matrix  tCT is not zero at  fttt ,0 . If matrixQ is

positive semidefinite, performance term    tQytyT is always greater than or equal to zero,

namely     0tQyty for all system output    txtC . For system output is completely

observable, each output is formed by unique system state  tx . Hence we may think that

matrix    tQCtCT is positive semidefinite. Similarly, we may deduce that matrix

   tPCtCT is also positive semidefinite.
Then from optimal control of state regulator, we may easily confirm the optimal

control  tu* :
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         txtKtBtRtu T1* 

Theorem When and only when linear time-variant system in equation(7.184) is
completely observable, there are uniquely optimal control:

         txtKtBtRtu T1*  (7.188)

Here, gain matrix  tK is positive definite symmetric matrix, and it is unique solution
of the following Riccati differential equation:

                         tCtQtCtKtBtRtBtKtKtAtAtKtK TTT  


1 (7.189)

     ff
T

f tPCtCtK 

Optimal state  tx* is the solution of the following differential equation:

              txtKtBtRtBtAtx T1


 ,   00 xtx  (7.190)

Optimal performance index functional is as follows:

     000
*

2
1 txtKtxJ T (7.191)

From equation(7.188), we easily find that optimal output regulator is still state
feedback, not output feedback. Optimal control law is the same as that of optimal state
regulator. Their difference is only that they have different Riccati equations. This is because
system observability ensures the state of system output estimation state. However, system
output only shows the linear combination of each state component, and it can not provide
the all information of each state component, but optimal control needs the information of
all state variables. Hence, optimal output regulator is still state feedback, not output
feedback.

2.Infinite time output regulator
Postulate that linear time-constant system is as follows:

        00, xtxtButAxtx 


(7.192a)

 tCxy  (7.192b)
For infinite time output regulator, quadratic performance index functional yields to

        dttRututQytyJ TT



02

1 (7.193)

Here, weighting matrices Q and R are respectively positive semidefinite and

positive definite symmetric matrices. Please find optimal control  tu* to make that
performance index functional J is minimum.

The deducing course is similar to that in previous theme. We may utilize the result of
infinite time state regulator to gain the result of infinite time output regulator.

Theorem When and only when linear time-constant system in equation(7.192) is
completely controllable and completely observable, there is an uniquely optimal control
 tu* :
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   tKxBRtu T1*  (7.194)
Here, gain matrix K is positive definite symmetric matrix, and it is the unique solution of
the following Riccati algebraic equation:

01   QCCKBKBRKAKA TTT (7.195)

Optimal state control  tx* is the solution of the following differential equation:

        00
1 , xtxtxKBBRAtx T  



(7.196)

Optimal performance index functional is as follows:

   00
*

2
1 tKxtxJ T (7.197)

Example7.15 A given state equation of linear time-constant continuous system is as
follows

uxx 




















1
0

00
10

,   00 xtx 

Output equation:
     txty 01

Performance index functional is

    dttqutyJ 



0

22

2
1

Please find optimal control  tu* when functional J gets minimum.
Solution:
1) Judge whether given system is completely observable and completely controllable.

  2
01
10









 rankABBrankrankSc

2
10
01


















 rank

CA
C

rankrankSo

Hence, given system is completely controllable and completely observable.
2) Ascertain the relative matrices in Riccati algebraic equation.











00
10

A , 









1
0

B ,  01C , 1Q , qR 

3) Acquire gain matrix K from Riccati algebraic equation.
Assume the positive definite symmetric matrix:











2212

1211

kk
kk

K

  


















00
01

011
0
1

QCCT

Gain matrixK can satisfy the following Riccati algebraic equation:
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01   QCCKBKBRKAKA TTT

Namely,

  0
00
01

10
1
0

01
00

00
10

2212

12111

2212

1211

2212

1211

2212

1211 

































































 

kk
kk

q
kk
kk

kk
kk

kk
kk

Simplify and merge:

































00
00

121

111

2
2212221211

221211
2
12

k
q

kkk
q

k

kk
q

kk
q

Then, the following algebraic equation can be achieved from above matrix equation:





















012

01

011

2
2212

221211

2
12

k
q

k

kk
q

k

k
q

The solution of above algebraic equation group is gained as follows:

qk 211  , qk 12 , qqk 222  (when 0q )

Since gain matrixK is positive definite, its solution is ensured as

qk 211  , qk 12 , qqk 222  (when 0q )

Hence, gain matrixK can be written out in the following:














qqq

qq
K

2

2

4) Respectively give out optimal control law  tu* and optimal state  tx* and optimal
performance index functional:

Optimal control law  tu* :

       
     tx

q
qq

tx
q
q

tx
tx

qqq

qq
q

tKxBRtu T
21

2

11* 2

2

2
101





















 

Solve the optimal state  tx* from state equation:

 















































 

q
qq

q
q

qqq

qq
q

KBBRA T 2
10

2

2
10

1
01

00
101

   
 

 
 







































 




tx
tx

q
qq

q
q

tx

txtx
2

1

2

1 2
10
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     


































 00

* 2
10

exp tt
q
qq

q
qtxtx

Optimal performance index functional *J from equation(7.197):

          
 

       



 























0
2
202010

2
1

02

01
020100

*

222
2
1

2

2
2
1

2
1

txqqtxtxqtxq

tx
tx

qqq

qq
txtxtKxtxJ T

7.7.5 Output follower of linear continuous system

Control objective of output follower is to make system output  ty tightly follow the

desired output  tz without consuming plenty of control energy.
1. Follower problem of linear time-variant system
Give out a linear time-variant system as follows:

         tutBtxtAtx 


(7.198a)

     txtCty  (7.198b)

  00 xtx  (7.198c)

Postulate that control law  tu is not constrained. Sign vector  tz expresses the

desired system output, which has the same dimension as that of actual system output  ty .

The error vector  te is defined as the following:

     tytzte  (7.199)
Or, written into another form:

       txtCtzte  (7.200)

Find the optimal control  tu* to make the following performance index functional J
have minimum.

                dttutRtutetQtetPeteJ ft

t

TT
ff

T  
02

1
2
1 (7.201)

Here, weighting matrices  tQ ,  tR are respectively positive semidefinite and
positive definite symmetric matrices; weighting constant matrix P is positive semidefinite
symmetric matrix.

In the following paragraphs, minimum principle will be employed to solve the optimal
problem. And construct Hamilton function as the following form:

                        tutBtxtAttetRtetetQtetuxH T
ff

T
ff

T  
2
1

2
1,,, (7.202)

Then canonical equation is as follows:
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         tutBtxtAHtx 







(7.203a)

                   

              ttAtxtCtztQtC

tztQtCttAtxtCtQtC
x
Ht

TT

TTT














(7.203b)

The following equation can be gained from minimum condition of Hamilton equation
for control law is not constrained:

        0

 ttBtutR
u
H T  (7.204a)

Namely,
       ttBtRtu T 1*  (7.204b)

For matrix  tR is positive definite, above control law  tu* may make Hamilton
function have minimum.

Boundary condition:
  00 xtx  (7.205a)

Transverse condition:

                  
         
        
   ff

T

ffff
T

ff
T

fff
T

fff
T

fff
f

f

tPetC

txtCtzPtC

tPztCtxtPCtC

txtCtzPtxtCtz
tx

t












2
1

(7.205b)

From equation(7.203) and equation(7.204b), we can write out the following canonical
equation:

 
 

     
       

 
       tz

tQtCt
tx

tAtCtQtC
tBRtBtA

t

tx
TTT

T











































 




01


(7.206)

The solution of above canonical equation is as follows:

 
 

     
       

   
 

     
       

        



dz
tQtC

t
tAtCtQtC

tBRtBtA

t
tx

tt
tAtCtQtC

tBRtBtA
t
tx

T

t

t TT

T

TT

T



















































































0
exp

exp

0

1

0

0
0

1

(7.207)

Canonical equation(7.203) is linear, and  ft ,  ftx and  ftz among transverse

condition have linear relationship; hence we may postulate the following relationship:
       tgtxtKt  (7.208)

Here, matrix  tK is nn undetermined matrix; and function  tg is unknown

function which is related to the desired function  tz .
Equation(7.208) is differentiated and the following expression can be achieved:
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           tgtxtKtxtKt


 (7.209)
Equation(7.204b) and equation(7.208) are replaced into equation(7.203a), and then we

can get:

                      tgtBtRtBtxtKtBtRtBtAtx TT 11 


 (7.210)
Above equation(7.210) is substituted into equation(7.209); and then the following

expression can be gained:

                             tgtgtBtRtBtxtKtBtRtBtKtAtKtKt TT









  11 (7.211)

Equation(7.208) is replaced into equation(7.203b); and then there is the following
expression:

                     
                      tgtAtztQtCtxtKtAtCtQtC

tgtxtKtAtxtCtztQtCt
TTTT

TT






 (7.209)

Comparing equation(7.209) with equation(7.211), we may find that the following
expression should be always found:

                           

                      tgtAtztQtCtxtKtAtCtQtC

tgtgtBtRtBtxtKtBtRtBtKtAtKtK

TTTT

TT







 





11

(7.210)

Equality (7.210) should be always found for any system state  tx and desired system

output  tz ; hence the corresponding terms in both sides of above equality(7.210), and then
they yields to the following two equations:

                         tCtQtCtKtAtKtBtRtBtKtAtKtK TTT  


1 (7.211)

                  tztQtCtgtAtBtRtBtg TTT  


1 (7.212)
Comparing equation(7.208) with equation(7.205b), we find that the boundary

condition of above differential equations can be acquired:
     ff

T
f tPCtCtK  (7.213)

     ff
T

f tPztCtg  (7.214)

We may utilize computer software to solve differential equation from equation(7.211)
to equation(7.212) by inverse time sequence, and then we acquire functions  tK and  tg .
And they are substituted into equation(7.208) and furthermore equation(7.204b) is utilized.
Finally we can confirm that optimal control law  tu* is as follows:

            tgtxtKtBtRtu T  1* (7.215)
Optimal system state may be solved from equation(7.210).And optimal performance

index functional *J is as follows:

           000000
*

2
1 ttxtgtxtKtxJ TT  (7.216)
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Here, function  0t has to satisfy the following differential equation and boundary

condition:

                 tgtBtRtBtgtztQtBt TTT 1

2
1 



 (7.217)

       fff
T

f tztKtzt  (7.218)

After comparing equation(7.211), equation(7.213) with equation(7.189), we can easily
find that they are completely same. This shows that there is completely same feedback
structure between feedback structure of optimal follower and feedback structure of optimal
regulator. Optimal follower is not related to desired system output  tz . By comparing
equation(7.210) with equation(7.190), it is easily seen that characteristic roots of
closed-loop control system between optimal follower closed-loop system and optimal
output regulator are completely equal and that they are not related to the changing law of
desired output  tz . The difference between them only lies in that an input term is added in

the follower system which is related to function  tg .
2. Follower problem of linear time-invariant system
In above content, we have discussed the follower problem of linear time-variant

system at  fttt ,0 . However, linear time-invariant system is very common and

practical in engineering.
For a controllable and observable system, the state equation can be depicted as

follows:

     tButAxtx 


(7.219a)

     txtCty  (7.219b)

  00 xtx  (7.219c)

Assume that the desired system output  tz is a constant vector, and then error

function  te can be expressed as follows:

     tCxztyzte  (7.220)
Performance index functional J can be depicted as

         
ft

t

TT dttRututQeteJ
02

1 (7.221)

Here, matrixQ and matrixR are both positive definite matrices.

When final time ft is given, the following results by imitating previous results can be

acquired:
      tgtKxBRtu T  1* (7.222)

Among equation(7.222), matrixK and function  tg satisfy the following equation:

01   QCCKAKBKBRKA TTT (7.223)
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      QzCtgABKBRtg TTT  


1 (7.224)
Example7.16 First-order dynamic system is depicted as follows

     tutaxtx 


Output equation:    txty 

Control law  tu is not constrained. And the desired system output is expressed as

sign  tz ; and error expression can be depicted as the following equality:

         txtztytzte 

Performance index functional J is

      dttrutqetpeJ ft

tf  
0

222

2
1

2
1

Here, 0,0,0  rqp . Please find optimal control  tu* when functional J
gets minimum.

Solution:
In terms of equation(7.222), we can get the optimal control law  tu* :

           tgtKx
r

tgtKxBRtu T   11*

GainK is the solution of the following Riccati algebraic equation:

qaKK
r

aKK 


21
，   ptK f 

The solution of above algebraic equation:

 

    

    f

f

tta
a

r
p

a
r
p

tta
a

r
p

a
r
p

a

rtK


























2exp1

2exp

Here,
r
qa  2

In terms of equation(7.212) and equation(7.214), the differential equation and
boundary condition are:

       tqztg
r
tKatg 



 



,    ff tpztg 

Optimal track curve of system is the solution of the following differential equation:

          00,11 xxtg
r

txtk
r

atx 



 



Example7.17 A given state equation of linear time-constant continuous system is as
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follows

uxx 




















1
0

00
10

,   00 xtx 

System output equation:
     txty 01

Performance index functional J is

        
ft dttutztxJ

0

22

2
1

Please find optimal control  tu* when functional J gets minimum.(assume that

desired system output z is r , namely,   rtz  )
Solution:
In terms of given information in this example, the following matrices can be known:











00
10

A , 









1
0

B ,  01C , 1Q , 1R , 0P

According to equation(7.223), the matrix equation can be written out:
01   QCCKAKBKBRKA TTT

Namely,

    001
0
1

01
00

10
1
0

00
10

2212

1211

2212

1211

2212

1211

2212

1211 


































































kk
kk

kk
kk

kk
kk

kk
kk

Simplify and merge above matrix equation; then we can gain:






















00
00

2
1

2
2212221211

221211
2
12

kkkkk
kkkk

Then the following algebraic equation group can be gained from above equation:














02
0

01

2
2212

221211

2
12

kk
kkk

k

Consider the characteristic of gain matrixK , we can get the following solution:

22211  kk , 112 k
Hence, gain matrixK may be written out as follows:











21
12K

Now let’s find the function  tg . This function  tg can be expressed in terms of
equation(7.224):

      QzCtgABKBRtg TTT  


1

Namely,
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      rtgtg 


















































0
1

01
00

10
1
0

21
12

Simplify and merge, then get:

    rtgtg 





















0
1

21
10

Final condition of function  tg is:   0ftg .

Utilizing integral method is to solve the expression of function  tg .

 
 

 
 




rdetgetg
t

t

ttt









 





















0
1

0

0 21
10

0
21
10

When 00 t , above expression is simplified into the following form:

   
 




rdegetg
t

t

tt









 




















0
1

0
0

21
10

21
10

Hence, optimal control  tu* can be gained:

          
 

 
       tgtxtx
tg
tg

tx
tx

tgtKxBRtu T
221

2

1

2

11* 2
21
1210 






































 

7.8 Linear Quadratic Sub-optimal Control

In previous sections, state regulator,output regulator and output follower have been
discussed to search relatively optimal control  tu* which is realized by the linear

combination of all system state variables      txtxtx n,,, 21  . However, in actual

engineering,it’s very difficult to acquire all information of system state variables. Then we
utilize system outputs      tytyty l,,, 21  to form the control law  tu by

combination. That’s to say, system outputs      tytyty l,,, 21  with lower dimension

are employed to form output feedback system. Then the performance index functional of
such system with no complete information is worse than that of optimal control system.
Such control is rendered to sub-optimal control.

For sub-optimal control, input control  tu is expressed through system output:

   tKytu  (7.225)
This equation is output feedback in nature.
Assume the the completely controllable and observable system is given as follows:

     
   tCxty

tButAxtx





(7.226)

Performance index functional of sub-optimal control system is as follows:
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        



02

1 dttRututQxtxJ TT (7.227)

Here, matricesQ and R are positive definite matrices.
The block diagram of such closed-loop control system is shown in figure7.2

Figure7.2 Output feedback block diagram of closed-loop control system
From figure7.2, the state equation of closed-loop control system is gained:

       txAtxBKCAtx 


(7.228)

Here, matrix BKCAA  is the state matrix of closed-loop control system in
figure7.2. Then, performance index functional J may be deduced into the following form:

        

        

    

   























0

0

0

0

2
1
2
1
2
1
2
1

dttxQtx

dttxRKCKCQtx

dttRKCxKCtxtQxtx

dttRututQxtxJ

T

TTT

TTTT

TT

(7.229)

Here, RKCKCQQ TT . (7.230)
In this case of figure7.2, the task of design is to ensure the output feedback matrix K

to make performance index functional J in equation(7.230) get minimum.
Lyapunov second method may be utilized to solve such problem. Firstly, all

characteristic roots of closed-loop state matrix A both have negative reals, then
closed-loop system is asymptotically stable. Secondly, utilize the relationship between the
second method of Lyapunov function and quadratic performance index functional J .

For asymptotic system in equation(7.228), we construct Lyapunov function:
     tPxtxxV T . (7.230)

UNDER PEER REVIEW

Malgwi
Highlight

Malgwi
Highlight
Figure 7.2

Malgwi
Highlight

Malgwi
Highlight



Modern Control Theory

- 444 -

Matrix P is a symmetric matrix with all reals. First-order derivative is exerted into
both sides of equation(7.230); and then we can gain:

                      txAPPAtxtxAPtxtPxAtxtxPtxtPxtxxV
TTTTTT

T




(7.2
31)

For asymptotic system, if Lyapunov function  xV is positive definite, its

derivative  xV


has to be negative definite; and then order:

QAPPA
T

 . (7.231)
Here, matrixQ is positive definite real symmetric matrix.
Then equation(7.231) can be converted into the following form:

     txQtxxV T


(7.232)

Hence, function  xV


is negative definite. Comparing equation(7.232) with
equation(7.230), we easily get:

        tPxtx
dt
dtxQtx TT  (7.233)

Hence, an asymptotic system has to satisfy equation(7.231) and equation(7.233), here,

matrices Q and P have to be both positive definite and real symmetric matrices.
Equation(7.233) is substituted into equation(7.229), and then we can achieve:

                00
2
1

2
1

2
1

2
1

00
PxxPxxtPxtxdttxQtxJ TTTT 



 (7.234)

Characteristic matrix A both has negative reals for all eigenvalue. Hence, there is
  0lim 


tx

t
(7.235)

Then the following expression is found:

   00
2
1 PxxJ T (7.236)

Comparing equation(7.236) with equation(7.177), they have same form, but their
solution is not different.

Feedback matrix K can not be directly solved from Lyapunov function in
equation(7.237) because matrices P and K are both unknown.

    RKCKCQBKCAPPBKCA TT (7.237)
A simple solving method is gradient reducing method. Matrix P may be expressed by

matrix K from equation(7.237). Then matrix expression  KP is replaced into
equation(7.236). And then order

  0



K
KJ (7.238)

Then matrix K will be solved from equation(7.238). Here, what needs to be noted is
that the optimal parameters of feedback matrix K are related to original state
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condition  0x .
Example7.18 A given state equation of linear time-constant continuous system is as

follows

uxx 





















1
0

10
10

System output equation:
     txty 01

Performance index functional J is

 



02

1 dtRuuQxxJ TT , 









10
01

Q , 









00
01

R

Assume that system state  tx2 is not measured, and then output feedback should be
adopted here. Please find feedback matrix k to make that functional J gets minimum.

Solution:
From equation(7.228), state equation of closed-loop system can be gained:

    x
k

xkxBKCAxAx 








































1
10

01
1
0

10
10

The performance index functional J from equation(7.229) can be written out:

        

   













 




0

2

00

10
01

2
1

2
1

2
1

dttx
k

tx

dttxRKCKCQtxdttxQtxJ

T

TTTT

According to Lyapunov equation(7.231), we can write out the following equality:

QAPPA
T



Namely,








 






































10
01

1
10

11
0 2

2212

1211

2212

1211 k
kpp

pp
pp
ppk

Merge and then gain

  






 












10
01

2
2 2

2212221211

22121112 k
ppkppp
kpppkp

The following algebraic equation group can be gained from above equality:

 












12
0

12

2212

221211

2
12

pp
kppp
kkp

All elements in matrix P can be expressed by feedback gain matrix k as follows:

k
kkkp

2
21 32

11



k
kp

2
1 2

12


 ,
k
kkp

2
1 2

22



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Namely,

































k
kk

k
k

k
k

k
kkk

pp
pp

P

2
1

2
1

2
1

2
21

22

232

2212

1211

Assume original value of system state:   101 x ,   002 x . And then the following
expression from equation(7.236) can be written out:

     
k

kkk

k
kk

k
k

k
k

k
kkk

PxxJ T

4
21

0
1

2
1

2
1

2
1

2
21

01
2
100

2
1 32

22

232




































Order

  0
4

12221
4
1

2

2332











 





k
kk

k
kkk

dk
d

K
KJ

Hence, 5652.0k

7.9 Optimal Control of Discrete Control System

7.9.1 Basic form of linear discrete system

Consider the following discrete state equation:
      
  00

1,,2,1,0,,1
xtx

Nkkkukxfkx


 ，
(7.239)

Here,  kx is the system state of n dimension state vector at kth time;  ku is

system control input of r dimension control vector between kth step and  thk 1 step.
Optimal control problem is to ensure optimal control

sequence       1,,1,0 Nuuu  to make the following performance index functional
minimum.

       





1

0
,,

N

k
kkukxLNxJ  (7.240)

Here, discrete system state  Nx is assumed to be free.   Nx shows the
consuming cost in aim function.

Such problem is the same as previous control problem in nature. Their difference is
that the number of variable increases N times. Namely,

        Nkkxkxkx n ,,2,1,,,, 21  

        1,,2,1,0,,,, 21  Nkkukuku n 

Constraining equation(7.239) adds N times, too; hence problem scale also expands.
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Imitating previous idea, expression(7.239) may be written into the following form:
       01,,  kxkkukxf (7.241)

Number of Lagrange undetermined constants adds N times, too.
        Nkkkk n ,,2,1,,,, 21  

Imitating previous methods, we now construct a new function:

                  





1

0
1,,1,,

N

k

T kxkkukxfkkkukxLNxV  (7.242)

Then above minimum problem of equation(7.240) is transformed into finding the
minimum problem of no constrained problem.

In order to conveniently remark relative expressions, we give out the following marks:
         kkukxLkukxLk ,,,  (7.243)

         kkukxfkukxfk ,,,  (7.244)

           kukxfkkukxLH k
T

kk ,1,   (7.245)

Then equation(7.242) may be simplified into the following form:

           





1

1
0

N

k

T
k

T kxkHHNxNNxV  (7.246)

After we find the increment of functionalV , the following linear master unit can be
gained by neglecting high-order infinitesimal term.

             

         






































































1

1

1

1

00

0
0

0
0

N

k

kT
N

k

kT

TTNT

ku
Hkuk

kx
Hkx

u
Hu

x
HxN

Nx
NxV





(7.247)

Necessary condition that functionalV gains minimum is 0V . After we consider
that expression   00 xx  is constant, there is expression   00 x . Then minimum

necessary condition can be achieved from equation(7.247) as follows:

     

   
        

 
  
   
































N
Nx
Nx

xx
Nkkukxfkx

Nk
ku
H

Nkk
kx
H

k

k





00
1,,2,1,,1

1,,2,1,0

1,,2,1,







(7.248)

Namely,
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    
 

    
       

    
 

    
     

        
 
  
   


























































N
Nx
Nx

xx
Nkkukxfkx

Nkk
ku

kkukxf
ku

kkukxL

Nkkk
kx

kkukxf
kx

kkukxL

T

T







00
1,,2,1,0,,1

1,,2,1,01,,,,

1,,2,1,1,,,,







(7.249)

The number of equation(7.48) or (7.49) are respectively   nnNrNNn ,,,1 and

n . Total number of equation is   nNrn 2 . Except n variables  0x , the total

undetermined variable number is  Nrn 2 .

In equation(7.248) or (7.249), given  N at final time N and  0x at initial time,
are called to their boundary condition. The problem of solving the boundary of given two
points is called to the problem of two point boundary value.

7.9.2 State regulator of linear discrete system

Assume that the state equation of linear discrete system is the following:
           
  00

1,,2,1,0,1
xtx

NkkukBkxkAkx


 
(7.250)

In this section, we will respectively discuss two cases: finite time state regulator and
infinite time state regulator.

1.Finite time state regulator
For finite time state regulator, quadratic performance index functional J can be

depicted as follows

                





1

02
1

2
1 N

k

TTT kukRkukxkQkxNPxNxJ (7.251)

Here, control sequence  ku is not constrained; weighting matrices P and Q are
positive semidefinite matrices; matrix R is positive definite symmetric matrix.

Please find the optimal control sequence   1,,2,1,0*  Nkku  to make
performance index functional J minimum.

Above optimal control problem may be solved by minimum principle. And now let’s
firstly construct Hamilton function:

                        kukBkxkAkkukRkukxkQkxkuxH TTT  1
2
1

2
1,,, 

1,,2,1,0  Nk  (7.252)
Then the following canonical equation can be achieved:
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   
         kukBkxkA
k
kHkx 





1
1


(7.253)

   
         1




 kkAkxkQ
kx
kHk T  (7.254)

Final performance index is

      NPxNxNNx T

2
1,  (7.255)

Hence, boundary condition and transverse condition are as follows:
  00 xx  (7.256)

         NPxNPxNx
Nx

N T 









2
1 (7.257)

If control law  tu is not constrained, the following control equation is not satisfied:

 
          01 


 kkBkukR

kN
kH T  (7.258)

Hence, we can get:
       11*   kkBkRku T  (7.259)

In equation(7.257), there is linear relationship between  N and  Nx ; and

furthermore canonical equation is also linear, hence we can postulate that  kx and  k

exist the following linear relation for any time:
      1,,2,1,0  NkkxkKk ； (7.260)

Here, matrix  kK is nn undetermined matrix.
Equation(7.259) and equation(7.260) are replaced into canonical equations(7.114) and

(7.115); and then we can gain:
             
             11

11
1

1








kxkKkBkRkBkxkA
kkBkRkBkxkAkx

T

T 
(7.261)

             
         11

1




kxkKkAkxkQ
kkAkxkQkxkKk

T

T 
(7.262)

 1kx is eliminated from equation(7.261) and equation(7.262); and relative result is
compared with equation(7.260). Then we may get the following equation:

           
         
                  kxkAkKkRkBEkKkAkxkQ

kxkKkAkxkQ
kkAkxkQkxkK

T

T

T

11 11

11
1

 



 

(7.263)

Equation(7.263) should be found for any system state  kx , hence  kK should
satisfy the following equation:

                kAkKkRkBEkKkAkQkK T 11 11   (7.264)
Namely,
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                kAkBkRkBkKkAkQkK TT 111 1   (7.265)
And furthermore the following final condition has to be satisfied:

  PNK  (7.266)
Equation(7.265) is rendered to Riccati difference equation. Optimal gain matrix

sequence  kK may be confirmed through solving Riccati difference equation according to

inverse time direction. After  kK is ensured, equation(7.262) can be utilized to gain

          kxkQkKkAk T  1 (7.267)
Hence, optimal control law is as follows:

               1,,1,0,1*   NkkxkQkKkAkBkRku TT  (7.268)
Equation(7.268) is replaced into equation
                     
  00

1 1,,2,1,0,1
xtx

NkkxkQkKkAkBkRkBkAkx TT


  

(7.269)

Hence, optimal state  tx* is the solution of linear difference equation(7.269). Optimal

control  ku* is unique, which is determined by equation(7.268). Optimal control  ku*

and optimal state  kx* are substituted into performance index function, and we can
acquire the minimum of performance index function:

     000
2
1* xKxJ T (7.270)

State regulator block diagram of discrete system is shown in figure7.3.

Figure7.3 State regulator block diagram of discrete system
2.Infinite time state regulator
For infinite-time state regulator  N , performance index functional is as follows:

        





02

1
k

TT kRukukQxkxJ (7.271)

Final time is possibly tendency to infinity, hence we have to require that the final
state  Nx should tend toward zero state. Otherwise, performance index functional does

not converge. So that performance index functional does not include term  Nx .

When N , Riccati matrix  kK will become a constant matrix, namely:
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  KkK
k




lim (7.272)

Hence Riccati equation may be expressed into the following Riccati equation:

  KABKBBRKBAQKAAK TTTT 1
 (7.273)

Optimal control law is
     kxQKABRku TT  1* (7.274)

Optimal performance index functional yields to

   00
2
1* KxxJ T (7.275)

Example7.19 A given state equation of linear discrete system is as follows
      1,,2,1,0;1  Nkkukxkx 

Initial condition is  0x , control law  ku is not constrained.
Performance index functional J is

   





1

0

22

2
1

2
1 N

k
NuNcxJ

Please find optimal control sequence   1,,1,0*  Nkku  to make that performance
index functional J gets minimum.

Solution:
In order to demonstrate given conclusions in this section, we assume 2N , namely

only solve a two-step problem. Hence its performance index functional is the following:

     1
2
10

2
12

2
1 222 uucxJ 

Comparing with equation(7.250) and equation(7.251), we can know that the optimal
control parameters are as follows:

  1kA ,   1kB , cP  , 0Q and 1R
From equation(7.265), Riccati equation is the following:

      
  11

111 11







kK
kKkKkK

Since 2N and   cPK 2 ; we can solve   1,0kkK in terms of inverse
time:

   
  112
21







c
c

K
KK ,    

  1211
10







c
c

K
KK

The optimal control can be gained from equation(7.268):
      1,0*  kkxkKku ；

       0
12

000* x
c
cxKu




Optimal state under the optimal control  0*u is the following:
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       0
12
1001 ** x

c
cuxx





         0
12

1
1

111 *** x
c
cx

c
cxKu







Optimal state under the optimal control  1*u is the following:

       0
12

1112 *** x
c

uxx




Optimal performance index functional is

       0
122

00
2
1 22* x

c
cxKJ




7.9.3 Optimal Control Discretization of linear continuous system

Assume that the state equation of continuous system is the following:

    
  00

,,
xtx

ttutxfx





(7.276)

Aim functional is the following:

       dtttutxLttxJ ft

tff 
0

,,, (7.277)

Here,   ftx is final function; final state  ftx is free.

Optimal control problem is to find optimal control law  tu* to make equation(7.277)
minimum under the condition of equation(7.276). We should firstly disperse equation
(7.276) and then find the optimal solution of discrete system.

Firstly, equation(7.276) is transformed into the following discrete form:
          1,,1,0;,,1  Nktkkukxfkxkx  (7.278)

Performance index functional J is the following:

       





1

0
,,

N

k
NxtkkukxLJ  (7.279)

Here, t is system sampling time.
Then, find optimal solution of discrete system. If we make that system sampling

time t tends toward zero, discrete system will become a continuous system.
Similarly, we may imitating previously processing method, and then give out the

following definition of Hamilton function:
                  kkukxfkkkukxLkkkukxH T ,,1,,,,,   (7.280)

The necessary condition of getting minimum is the following:
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     

 
        

 
  
    
































N
Nx
Nx

xtx
kxkxtkkukxf

t
ku
H

kkt
kx
H





00

1,,

0

1

(7.281)

When 0t , equation(7.281) will become the following form:

   

 
      

   
 
  
   









































f
f

f t
tx
tx

xtx

tx
t
tHorttutxfx

tu
H

t
tx
H








00

,,

0

(7.282)

Here,              ttutxftttutxLtH T ,,,,  .
Equation(7.282) is the necessary condition of optimal solution in equation(7.276) and

equation(7.277).

7.10 Dynamic Programming

In 1950s, dynamic programming was brought forward by America Scholar R.Bellman
for solving optimal control problem of multistage decision process.Dynamic programming
has been widely applied into plenty of technical fields and control engineering.

7.10.1 Optimality principle

In nature, dynamic programming is to solve the optimization of multistage decision
process on the basis of optimality principle. Here, multistage decision process means that a
whole course is divided into plenty of stages and that in each stage the decision needs to be
given to make whole course realize optimization. That’s to say, an optimal policy has the
property that whatever initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state result from the first decision. As used
here, a “decision” is a choice of control at a particular time and the “policy” is the entire
control sequence or function.

Consider the nodes in figure7.4, as states, in general sense. A decision is the choice of
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alternative paths leaving a given node. The goal is to move from A node to B node with
minimum cost.

A cost is associated with each segment of the line graph. Define abJ as the cost

between node A and B node. 1APJ is the cost between node A and node 1P , etc. For

path BRPA  11 , the total cost is 11111 BRRPAPab JJJJJ  . Optimal path(policy)

is defined by the following expression.
 BQQPAPBRRPAPBQQPAPBRRPAP JJJJJJJJJJJJJ 2222222211111111 ,,,minmin 

(7.282)
If initial state is node A and if initial decision is to go to node 1P , then the path from

node 1P to node B must certainly be selected optimally if the overall path from node A
to node B is to be optimum. If final decision is to go to node 2P , the path from node 2P
to node B must then be selected optimally.

Let’s postulate 1Pg and 2Pg be the minimum costs from node 1P and cost 2P ,

respectively, to node B . Then  BRRPBQQPP JJJJg 1111111 ,min  and

 BRRPBQQPP JJJJg 2222222 ,min  . The principle of optimality allows equation(7.282)

be written as
 2211 ,min PAPPAPa gJgJg  (7.283)

In equation(7.283), the key feature is that the quantity be minimized consists of two
parts:

(1) The part directly attributable to the current decision, such as 1APJ and 2APJ .
(2) The part representing the minimum value of all future costs, starting with the state

which results from the first decision.
The principle of optimality replaces a choice between all alternatives (Eq.(7.282)) by a

sequence of decisions between fewer alternatives(find 1Pg , 2Pg and then ag from

Equation(7.283)). Dynamic programming allows us to concentrate on a sequence of current
decisions rather than being concerned about all decisions simultaneously.

Division of cost into the two parts, current and future, is typically, but these parts do

Figure7.4 Route diagram fromA node to B node
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not necessarily appears as a sum. A simple example illustrates the sequence nature of the
method.

Example7.20 Given N numbers Nxxx ,,, 21  , find the smallest one.

Rather than consider all N numbers simultaneously, define kg as the minimum of

number kx through Nx . Then NN xg  , Continuing to choose between two alternatives

eventually leads to    Nxxxgxg ,,,min,min 21211  .

The desired result 1g need not be unique, since more than one number may have the

same smallest value. The recursive nature of the formula  1,min  kkk gxg is typically

of all discrete dynamic programming solutions.
From above example, optimality principle can be summarized as follows:
Optimal strategies of a multistage decision course have such property whatever initial

state and initial decision are, the remaining decisions must constitute an optimal policy
with regard to the state result from the first decision.Optimal problem of solving N -grade
decision course based on optimality principle is in nature to be simplified to solve the
optimal problem of solving N single-grade decision courses. In solving optimal problem,
positive calculation method can be adopted, inverting calculation method may be also
utilized. But for time-variant system, inverting calculation method has to be adopted.

The steps of applying dynamic programming to solve optimal problem is as follows:
Step1 Optimal problem which needs to be solved must be transformed into a

multistage decision course.
Step2 On the basis of optimality principle, the function equation of multistage

decision course is confirmed, which should include relative constraint conditions.
Step3 Recursive solution of function equation is solved.

7.10.2 Discrete optimality principle

1. Discretely optimal problem
We postulate that state difference equation of discrete system is as follows:

       1,,2,1,0,,,1  Nkkkukxfkx  (7.284)
Performance index functional in each step transformation is expressed as:

    kukxJJ , (7.285)

Initial state is  0x and state vector  kx at kth time is 1n matrix;  ku is
permissible control vector at kth time, which is 1r matrix and which can be
constrained or not.

Applying dynamic programming method to solve discretely optimal control
problem.First-level decision course is to confirm that first-level state is transformed from
initial state  0x under the control law  0u :
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      0,01 uxfx  (7.286)
Performance index functional:

    0,01 uxJJ  (7.287)

Optimal control  00u is confirmed in minimum. When the first-level state is converted
into the second-level state:

              1,0,01,12 uuxffuxfx  (7.288)
Performance index function is the following:

            1,0,01,1 uuxfJuxJ  (7.289)
General performance index functional of above two step transformation is as follows:

            1,0,00,02 uuxfJuxJJ  (7.290)

From equation(7.290), it’s easily observed that performance index functional 2J is

only the function of control vector sequence  0u and  1u for initial state  0x is given.

Then selecting control vector sequence  0u and  1u is required to make performance

index functional 2J get minimum. This is two-level decision course.
Similarly, for N -level decision course, the state vector sequence of system is as

follows:
      

              
                 

                 12,1,0,01,1

2,1,0,02,23
1,0,01,12

0,01








NuNuuuxfNuNxfNx

uuuxfffuxfx
uuxffuxfx

uxfx




(7.291)

Relative performance index functional is the following:
    

         

                   









1

0

2

1

,1,11,10,0

1,10,0
0,0

N

k
N kukxJNuNxJuxJuxJJ

uxJuxJJ
uxJJ


 (7.292)

Equation(7.292) demonstrates that when initial state  0x is given, performance index

functional NJ is only the function of control vector sequence   12,1,0  Nkku  , and

that system state  Nx is decided by equation(7.291). N -level decision course is to select

control vector sequence       1,,1,0 Nuuu  make performance index functional
in equation(7.292) get minimum.

On the basis of optimality principle, the optimization of N -level decision course
requires that however the first-level control vector  0u is confirmed, remaining

  levelN 1 course must constitute   levelN 1 optimal course from the beginning of

system state       0,01 uxfx  under the control law  0u . If sign   00 xJ N is marked as
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the minimum of performance index functional NJ in levelN  decision course,

sign   10
1 xJ N  is the minimum of performance index functional 1NJ in   levelN 1

decision course; then the following recursive function equation can be gained, namely
              0,00,0min0 0

1
0 uxfJuxJxJ NN  (7.293)

Recursive equation may be gained from equation(7.293) to acquire optimal control
strategy or optimal control sequence       1,1,0 000 Nuuu  . Equation(7.293) is
called to Bellman functional equation or dynamic programming basic equation.

Generally, function equation(7.293) is very complicate and it needs to be solved to
acquire recursive solution by digital computer.

Example7.21 State difference equation of discrete system is the following:
     kukxkx  21 ,   10 x

Please try to ensure optimal control sequence      2,1,0 uuu to make the following
functional get minimum.

    



2

0

22

k
kukxJ

Solution:
In this example, we can apply dynamic programming to solve the optimal control

sequence      2,1,0 000 uuu . If solving optimal control sequence is converted into
solving the optimal problem of multistage decision course, the given discrete system can be
considered as three-level decision course, namely 3N .

Step1, solve the optimal control law  20u from the final level. Postulate that  20x

is the final-level initial state to achieve relative input control  20u . Then performance

index functional 2J is

   22 22
2 uxJ 

The derivative of above functional 2J yields to the following form:

           02222
22

222 





 uux

uu
J

Final input control solution  20u can be achieved:   020 u

Relative performance index functional   20
2 xJ is also gotten:

    22 20
2 xxJ 

Step2, inversely deduce it previous level. Then performance index functional 1J is

              221111 2222
2

22
1 uxuxJuxJ 

In terms of optimality principle, have
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  
 

          

 
       

 
          

 
        1211415min

11211min

211min

2211min1

22

1

222

1

222

1

2222

1

0
1

uuxx

uxux

xux

uxuxxJ

u

u

u

u









The derivative of performance index functional   10
1 xJ is the following:

               014141211415
1

22 

 uxuuxx
u

Its solution:    110
1 xu 

Performance index functional   10
1 xJ :     131 20

1 xxJ 

Step3, inversely infer initial level. Then, performance index functional is:
              221100 222222

0 uxuxuxJ 

From optimality principle, we can know:
  

 
        

 
      

 
         

 
        040012013min

002300min

1300min

100min0

22

0

222

0

222

0

0
1

22

0

0
0

uuxx

uxux

xux

xJuxxJ

u

u

u

u









The derivative of above performance index functional   00
0 xJ can be expressed as

               008012040012013
0

22 

 uxuuxx
u

Solution:    0
2
300

0 xu 

Functional:     040 20
0 xxJ 

Step4, get the optimal control strategy. From difference equation, the following
equation can be gained:

     0021 uxx 

Hence,          0
2
1002110 xuxxu 

On consider   10 x , we can obtain the optimal control sequence of given discrete
system.Namely, optimal control strategy is the following:

      02,
2
11,

2
30 000  uuu

Example7.22 The transfer function of one-order inertia system is the following:

 
1


Ts
KsG
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Functional:     00

22 0, xxdtuxJ ft
  

Final system state  ftx is free. Assume that discrete control is adopted here to divide

control period  ft，0 into three segments.Please try to ensure optimal control sequence to

make the given functional get minimum.
Solution:
Given transfer function is transformed into the following state equation:

u
T
Kx

T
x 
 1

Discretize above state equation, and then get the difference equation:

      tkueKtkxetkx T
t

T
t

















11 , t is sampling period.

Order T
t

eg



 and 












T
t

eKh 1 ; and then above expression yields to

     khukgxkx 1
The discrete performance index functional is the following:

    



2

0

22

k
tkukxJ 

Apply dynamic programming to solve the optimal control problem for three given
segments. Here,    030

3 xJ ,    03 x .

Step1, deduce the optimal control law  20u from the final level. Then performance
index functional is the following:

     tuxJ  22 22
2 

          02222
2

22 

 tutux
u



Optimal control  20u :   020 u

Relative performance index functional   20
2 xJ is also gotten:

     txxJ  22 20
2

Step2, inversely deduce it previous level. Then performance index functional 1J is

                tuxuxJtuxJ  221111 2222
2

22
1 

In terms of optimality principle, have
  

 
          

 
       

 
          

 
             tuhughxxg

thugxux

txux

tuxuxxJ

u

u

u

u









111211min

1111min

211min

2211min1

2222

1

222

1

222

1

2222

1

0
1








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The derivative of performance index functional   10
1 xJ is the following:

                      01212111211
1

22222 

 tuhghxtuhughxxg
u



Its solution:    11 2
0
1 x

h
ghu





Performance index functional   10
1 xJ :      tx

hr
rgxJ 










 111 2
2

2
0
1

Step3, inversely infer initial level. Then, performance index functional is:
              221100 222222

0 uxuxuxJ  

From optimality principle, we can know:
  

 
        

 
     

 
         thugx

hr
rgux

tx
hr

rgux

txJuxxJ

u

u

u













































2
2

2
22

0

2
2

2
22

0

0
1

22

0

0
0

00100min

1100min

100min0







The derivative of above performance index functional   00
0 xJ can be expressed as

  
         0001202
0
0

2

20
0 






















 thugx
hr

rghu
u
xJ 

The solution of above differential equation can be solved:

   
 

 00
2222

22
0
0 x

hgh
ghghu










Step4, get the optimal control strategy. From difference equation, the following
equation can be gained:

       
 

 0001
2222

2

x
hghr

hrgrhugxx





Hence,    
 

 011
2222

2

2
0
1 x

hghr
hrgx

h
ghu

 





On consider   00 xx  , we can obtain the optimal control sequence of given discrete

system.Namely, optimal input control strategy is the following:

   
 

   
  02222

22

2222

22
0
0 00 x

hgh
ghghx

hgh
ghghu



















 
 

 
  02222

2

2222

2
0
1 01 x

hghr
hrgx

hghr
hrgu

 





Apparently, optimal input control sequences are the function of initial state variable.
2.Dynamic programming of discretely linear quadratic optimal problem
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Assume that the state difference equation of linear time-invariant discrete system is
the following:

     kBukAxkx 1 (7.294)

Please ensure the optimal control sequence       1,,1,0 0
1

0
1

0
0  Nuuu N to make

the following performance index functional have minimum.

            





1

0

N

k

TTT kRukukQxkxNPxNxJ (7.295)

Here, x is system state vector which is 1n matrix; u is control vector which is
1r matrix which is constrained or unconstrained permissible control; P and Q is

weighting matrix which is positive semi-definite symmetric matrix; R is positive definite
symmetric weighting matrix.

Firstly, we should consider the optimal control from final system state. The initial
condition of final system state is  1Nx , and then ensure optimal control law  10

1  NuN
to make the following performance index functional minimum:

                11111,11  NRuNuNQxNxNPxNxNuNxJ TTT
N (7.296)

In order to conveniently discuss functional, mark
          NxVNxNPxNxNxJ N

TT
N 0

In terms of optimality principle, the minimum functional expression can be gained as
    

 
           NxJNRuNuNQxNxNuNxJ N

TT

NuN
0

11 1111min1,1 
 (7.297)

Equation(7.294) is replaced into equation(2.797) and then gain
  

 
       

         1111

1111min1
1

0
1






NBuNAxPNBuNAx

NRuNuNQxNxNxJ

T

TT

NuN
(7.298)

The terms of right side in equation(7.298) is partially differentiated from control
functionu .

  RuRuu
u

T 2

 ,   TCCu

u



 ,   CCu

u
T 




Hence,

        0121212
1

0
1 


  NPAxBNPBuBNRu
Nu
J TTN (7.299)

Then optimal control  10
1  NuN which can make functional   10

1  NxJ N have

minimum can be confirmed:

     11 10
1 



 NPAxBPBBRNu TT
N (7.300)

If the following expression is marked,

  PABPBBRK TT
N

1
1



  (7.301)

Equation(7.301) can be written into the following form:
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   11 1
0

1   NxKNu NN (7.302)

Equation(7.302) is replaced into equation(7.298) to get
  

 
       

      11

1111min1

11

111

0
1









NxBKAVBKANx

NxRKKNxNQxNxNxJ

NN
T

N
T

N
T
N

TT

NuN
(7.303a)

Or equation(7.303a) is written into
      111 1

0
1   NxVNxNxJ N

T
N (7.303b)

Here,

   11111   NN
T

NN
T
NN BKAVBKARKKQV (7.304)

Mathematical induction can be applied to be written for Nl ,,3,2,1  from
equation(7.301) to equation(7.304).

   lxKlu ll 0 (7.305)

      lxVlxlxJ l
T

l 0 (7.306)

Among them, relative parameters can be expressed as

  AVBBVBRK l
T

l
T

l 1
1

1 



 (7.307)

   
PV

BKAVBKARKKQV

N

ll
T

ll
T
ll



 1 (7.308)

Equation(7.307) is substituted into equation(7.308), and then achieve:

  AVBBVBRBVAAVAQV l
T

l
T

l
T

l
T

l 1
1

111 



  (7.309)

Or written into the following form:
AMAQV l

T
l  (7.310)

In equation(7.310),

  1
1

111 



  l
T

l
T

lll VBBVBRBVVM (7.311)

For PVN  , matrix NM can be confirmed from equation(7.310). From

equation(7.311), matrix 1NV can be calculated out. In terms of such recursive method, we

can acquire matrices 2,, VVl  in turn. Then from equation(7.307), matrix lK can be

calculated out. Finally the optimal control sequence      1,,1,0 0
1

0
1

0
0  Nuuu N may

be acquired from equation(7.305) in terms of given matrix lK .

Summarizing above content, we can gain the following
Step1, order

PV 0 (7.312)

Step2, for 1l , calculate the following matrices:
AVAQZ l

T
l 1 (7.313)

AVBT l
T

l 1 (7.315)
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BVBRF l
T

l 1 (7.316)

Step3, calculate

lll TFK 1 (7.317)

Step4, calculate the equation in terms of equation(7.309):

ll
T
lll TFTZV 1 (7.318)

Step5, recalculate the content from step 2 to step4 for 2,3,,1,  NNl .
Step6, confirm the optimal control sequence

    1,,2,1,0,0   NiixKiu iNi  (7.319)

From above calculation steps, we can easily know that dynamic programming can be
applied to solve the linear quadratic optimal control problem of discrete system by state
feedback. Here, matrix lK is called to optimal feedback gain matrix which is only related

to system matrix A , control matrix B and weighting matrices RQP ,, , not to initial

condition.Hence, optimal feedback gain matrix lK of linear quadratic optimal control

problem in discrete system may be calculate offline.
Above steps are suitable for discrete time-variant system.
Example7.23 The state difference equation of discrete time-invariant system is as

follows:
     kukxkx 1 ,   100 x

Please try to ensure optimal control sequence to make the following functional get
minimum.

      



1

0

222 2
k

kukxxJ

Solution:
In terms of given information in this example, we can know:

1A , 1B , 1P , 1Q , 1R

            222222 2
0

0
2 xxVxPxxxJ TT  , 10  PV

According to the given steps from equation(7.313) to equation(7.319).
(1)When 1l , calculate

21101  AVAQZ T

101  AVBT T

201  BVBRF T

2
1

1
1

11   TFK

5.1
2
121

1
1111   TFTZV T

(2)When 2l , calculate
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5.25.1112  AVAQZ T

5.112  AVBT T

5.25.1112  BVBRF T

6.0
2
3

5
2

2
1

22   TFK

6.1
5
3

2
3

2
5

2
1

2222   TFTZV T

(3) Give out the optimal control sequence   1,0,0  iiu iN

      610
5
3000 202

0
0   xKxKu

             2610
2
100111 1112

0
1   uxKxKxKu

7.10.3 Continuous optimality principle

Presume that the state equation of linear continuous system is as follows:

    ttutxfx ,,


(7.320)

Initial state:   00 xtx 

The performance index functional J of linear continuous system is expressed as

       dtttutxLttxJ ft

tff 
0

,,, (7.321)

Please find the optimal control  tu0 .

Under the condition of given final time ft , if optimal control vector  tU 0 has been

confirmed, the minimum 0J of performance index functional is only the scalar function
of initial state  0tx and initial time 0t ; namely:

             
ft

tfff dtttutxLttxttxJttxJ
0

,,,,, 000
00

0  (7.322)

In terms of optimality principle, if time t is a point in time period  ftt ,0 , the

course from time t to final time ft can be also divided into two-level course:  ttt ,

and  fttt , , the minimum of performance index functional from time t to final

time ft can be written into the following form:

       
        












tt

t f

t

ttUu

t

t fUu

txdttuxLdttuxL

txdttuxLtxJ

f

f

0

0

,,,,min

,,min,0




(7.323)

If the course from time t to final time ft is optimal, the rear sub-process from tt 
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to final time ft is also optimal, ftttt  . Hence, rear sub-process may be transformed

into the following form:

         


ft

tt fUu
txdttuxLttttxJ ,,min,0 (7.324)

When t is very small, have

          tttutxLdtttutxL
tt

t



,,,, (7.325)

Then formula(7.323) can be approximately expressed into the following form:
          ttttxJtttutxLtxJ

Uu




00 ,,min, (7.326)

Expression  ttx  is developed into Taylor’s polynomial form:

       22
2

2

!2
1

!2
1 xxxt
dt
xdt

dt
dxxttx 

One-power polynomial is gotten from above polynomial, and then the following
expressions can be acquired：

  xxt
dt
dxxttx 

  ttuxft
dt
dxx  ,,

    ttxxJttttxJ  ,00

At the adjacent field of function  tx, ,above expression  ttxxJ  ,0 is

expanded into Taylor series, too. expression  ttxxJ  ,0 is the x function and is
related to time t . Hence, the corresponding Taylor’s series expansion is the following:

        t
t

txJx
x

txJtxJttxxJ
T



















,,,,
00

00 (7.327)

Equation(7.327) is replaced into equation(7.326), and then achieve:

         

         
































































ttuxf
x

txJttuxLt
t

txJtxJ

t
t

txJx
x

txJtxJttuxLtxJ

T

Uu

T

Uu

,,,,,min,,

,,,,,min,

00
0

00
00

(7.328)

For  txJ ,0 is not related to input control lawu , minimum of polynomial  txJ ,0

and  
t

txJ


 ,0

may be placed into the outside of minimum polynomial. Move and merge,

we can get:

       































tuxf
x

txJtuxL
t

txJ
T

Uu
,,,,,min, 00

(7.329)

Equation(7.329) is called to Bellman equation or dynamic programming of
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continuous system. It is a partially differential equation on  txJ ,0 . After solving
equation(7.329), we can acquire the optimal control make functional J minimum. Its
boundary condition is

     ffff ttxttxJ ,,0  (7.330)

If order

       

   tuxftuxL

tuxf
x

txJtuxLtuxH

T

T

,,,,

,,,,,,,,
0




















(7.331)

Here,  
x

txJ





,0

 (7.332)

Then Equation(7.329) could be written into the following form:
   tuxH
t

txJ
Uu

,,,min,0








 (7.333)

When control law  tu is not limited, then we may know:

   tuxH
t

txJ ,,,,0





 (7.334)

Above equation is called to Hamilton-Jacobi equation. Above equation demonstrates
that optimal control has to make Hamilton minimum. In fact, this is another form of
minimum principle.

We may deduce transverse condition and adjoining condition from equation(7.329).
Equation(7.329) can be written int the following form:

        0,,,,,,
00



















t
txJtuxf

x
txJtuxL

T

(7.335)

Partial differentiation is done for state variable x，and then we can get:

            0,,,,,,,,, 02

2

020






































tx
txJtuxf

x
txJ

x
tuxf

x
txJ

x
tuxL

TT

(7.336)

The total derivative of expression
x
J

 0

for time t is the following:

     
dt
dx

x
txJ

tx
txJ

x
txJ

dt
d

2

02020 ,,,


















 (7.337)

Equation(7.337) is replaced into equation(7.336), and then we can gain

        0,,,,,, 00

































x
txJ

dt
d

x
tuxf

x
txJ

x
tuxL

T

(7.338)

If we order    
x

txJt





,0

 , above equation may be written into the following form:
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       
































x

tuxf
x

txJ
x

tuxL
dt
td

T
,,,,, 0 (7.339)

This is adjoining equation required
x
H






 , which is the same as the previous result.

When ftt  , performance index functional at final time is the following:

        ff
T

ffff ttxNttxttxJ ,,,0   (7.340)

Here,  and N have same dimension.

Partial differentiation is done for state variable  tx , and then we can know:

  
 

  
 

  
 

ftt

T

f

ff

f

ff

f

ff

tx
ttxN

tx
ttx

tx
ttxJ









































 ,,,0

(7.341)

Namely,

    
 

  
 

ftt

T

f

ff

f

ff
f tx

ttxN
tx

ttx
t


































 




,,
(7.342)

Equation(7.340) is used to be partially differentiated for time variable t . And then we
can get

        
ff ttf

ffT

f

ff

ttf

ff

t
ttxN

t
ttx

t
ttxJ

 



































 ,,,0




(7.343)

After considering equation(7.334) and equation(7.336), we can get

     
0

,,




































 ftt
f

ffT

f

ff

t
ttxN

t
ttx

H 


(7.343)

Example7.24 Assume ux 


, please find optimal control  tu0 make the following
performance index functional minimum.

dtuxxJ ft

u  





 

0

242

2
1min

Solution:
In terms of given information, we can know:

242

2
1 uxxL  ,   utuxf ,,, 

Construct the following Hamilton function:

u
x
Juxxf

x
JLH








 242

2
1

In terms of Hamilton-Jacobi equation in equation(7.333), we have the following
equation:
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  




























u
x
Juxxf

x
JLtuxH

t
J

uuuuuu

242
0

2
1minmin,,,min 

After considering that control lawu is not constrained, we can gain:

02
2
1

0

0
242

























x
Ju

u

u
x
Juxx

u
H

Hence,
x
Ju




0

0

2
1 .










































































2
42

22
42242

0

4
1

2
1min

2
1

4
1

2
1min

2
1min

x
Jxx

x
J

x
Jxxu

x
Juxx

t
J

uu

uuuu

Boundary condition,    0ftx , hence,    00 ftxJ .

If If we order    
x

txJt





,0

 , we can know:

 tu 
2
10 

Example7.25 Assume the state equation of system is the following:

uxx 




















1
0

00
10

Initial state:   









0
1

0x

Performance index functional: 








 

0

22
1 2

12 dtuxJ

please find optimal control  tu0 without constraint make the following performance
index functional minimum.

Solution:
In terms of given information, we can know:

22
1 2

12 uxL  , uxf 


















1
0

00
10

Construct the following Hamilton function:

u
x
Jx

x
Jux

u
x

x
J

x
Juxf

x
JLH

2
2

1

22
1

2

21

22
1

2
12

2
12






































From Hamilton-Jacobi equation in equation(7.334), we can know:
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  
































u
x
Jx

x
Juxf

x
JLtuxH

t
J

uuuuuu
2

2
1

22
1

0

2
12minmin,,,min 

Since control lawu is not constrained, then we can achieve

0
2

0









x
Ju

u
H , namely,

2

0

x
Ju





We note that functional J is not related to time variable t , hence, 0
0




t
J . Then the

following equation is always found:

0
2
12

2

2
2

1

2

2

2
1 



























x
Jx

x
J

x
Jx

In order to solve this partial differential equation, we may assume that the following
optimal functional solution could satisfy above differential equation.

2
23212

2
11

0 2 xaxxaxaJ 

The functional solution is substituted into above differential equation, and then we can
know:

      021 2
2

2
3221321

2
1

2
2  xaaxxaaaxa

Then we can get the following equation group:
01 2

2  a , 02 321  aaa , 02
32  aa

The solution of above algebraic equation group is the following:
12 a , 13 a , 22 a

The optimal solution of performance index functional J is the following:
2
221

2
1

0 22 xxxxJ 

Hence, optimal control law can achieve

 21
2

0

2 xx
x
Ju 





This optimal control could be realized by state feedback component shown in
figure7.5.

In the following, we will explore the optimal state trajectory of system. The
Figure7.5 State feedback block diagram of example7.25
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homogeneous state equation of system is the following

xx 












22
10

Its solution can be gained as follows:

        
 

























































te
tte

s
s

L

xAsELxetx

t

t

At

sin2
sincos

0
1

22
1

00
1

1

110

Therefore, optimal control law  tu0 can be acquired:

   ttexx
x
Ju t cossin22 21
2

0





 

Optimal performance index functional can be known as

    
   



 

0

2

0

22220 24cossin4
2
1cossin2 dtedtttetteJ ttt

Example7.26 Assume the differential equation of system is the following:

uyyy 


2
Please find optimal controlu to make the following performance index functional J

minimum; and the absolute value of control control u is always less than 1.





0
1min dtJ

u

Solution:

If we select yx 1 and


 yxx 21 , then we can get the corresponding matrix
equation of example7.26.

State equation: u
x
x

x
x












































1
0

21
10

2

1

2

1

Out equation:  xy 01

From Hamilton-Jacobi equation in equation(7.329), the following equation may be
gained:

0


t
J ,   1,, tuxL ,

   uxx
x
Jx

x
J

uxx
x

x
J

x
Jtuxf

x
J T








































21
2

2
121

2

21

2
2

,,

0
2

1min
21

2

21






































 uxx

x
x
J

x
J

t
J

Uu

Then we consider the constraint condition: 11  u .
Calculate
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












































u
x
J

uxx
x

x
J

x
J

UuUu
221

2

21

min
2

1min

Obviously, optimal control  tu0 has to satisfy the following expression:













2

0 sgn
x
Ju

Since functional J is not related to time t , Hamilton-Bellman equation may become

012
22

1
21

2 





































x
J

x
Jx

x
J

x
Jx

This is a partial differential equation. We need to utilize computer software to acquire
optimal functional 0J . And then employing derivative 2xJ  is to gain the optimal
controlu .

Summarizing the content of the section7.10.3, we can get the following steps of
solving the optimal control problem on continuous dynamic programming.

1) Construct Hamilton function:

     tuxf
x
JtuxLtuxH

T

,,,,,,,
0














2) Extreme of Hamilton is utilized to solve the optimal controlu , namely
  0,,





u

tuxH (When control law u is not constrained)

Or,
 tuxH

Uu
,,,min 


(When control lawu is permissible control)

From these expression or equation, optimal control law 0u can be solved, which is the
function on variables x , t and xJ  0 .

3) Optimal control 0u is replaced into Hamilton-Bellman in equation(7.329). And
then according to the boundary condition, optimal functional   ttxJ ,0 .

4) Optimal functional 0J is inversely replaced into optimal control 0u again. And
then we can get optimal control function   ttxu ,0 which is the function of state variable.
Hence, we can realize the closed-loop control in terms of optimal control and optimal
performance index functional.

5) Optimal control   ttxu ,0 is substituted into system state equation, and then

optimal system state trajectory  tx0 can be solved.

6) Optimal system state trajectory  tx0 can be substituted into performance index

functional to gain optimal expression   txJ 0 .
However, what we need to point out is that optimal control strategy from

Hamilton-Jacobi equation only represents necessary condition of optimization. In order to
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guarantee that performance index functional J has minimum, the matrix formed by
second-order partial derivative of equation(7.331) to control lawu has to be positive
definite, namely,

0
0

2

2























x
J

u
f

uu
L T

(7.344)

Inequality in equation(7.344) represents the sufficient condition that performance index
functional J has minimum. This condition is called to Lerande(勒让得) condition.

In the general case, solving Hamilton-Bellman equation and Hamilton-Jacobi equation
is very difficult, especially difficult for solving analytic solution. Commonly, computer is
always employed to gain its numerical solution.

7.10.4 Relationship between minimum principle and dynamic

programming

We postulate that system state equation is the following:

 tuxfx ,,


(7.345)
And performance index functional J

    dtttutxLJ ft

t 0

(7.346)

In extreme principle, performance index functional is defined as the following
Hamilton function in equation(7.347). Here,  t is adjoining vector or co-state vector.

           ttutxftttutxLH T ,,,,  (7.347)
In order to make performance index function J get minimum, the Hamilton function

should be absolutely minimum. However, for dynamic programming, Hamilton-Bellman
equation is represented as follows:

       































tuxf
x

txJtuxL
t

txJ
T

Uu
,,,,,min, 00

(7.348)

If functional expression











 f
x
JL
0

has minimum, relatively optimal expression will

be acquired.

If order     
x

ttxJt





,0

 , we easily know that the construction of dynamic

programming and extreme principle is completely same. They can both calculate the same
results on optimal control problem.
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Chapter summary

This chapter focuses on the theme of optimal control which includes basic concept of
optimal control, functional and its extreme condition, optimal control solution, Pontryagin’s
minimum principle, Bang-bang control, linear quadratic optimal control and its sub-optimal
control, optimal control of discrete control system and dynamic programming. Firstly,
some basic concepts such as function and functional are gradually provided and explained.
Then, the solution of optimal control with unconstrained system is deduced and given out
by variation method. Then, Pontryagin’s minimum principle is deduced and explained to
provide some examples for illustrating relative theories. On the basis of minimum principle,
this chapter also illustrates Bang-bang control(switch control) and linear quadratic optimal
control. Finally, optimal control of discrete control system is also deduced and explained to
make readers easily understand given ideas. Besides these content, dynamic programming
is also given out, which can deduce the same result as minimum principle. In this chapter,
readers need to mainly master minimum principle, bang-bang control, linear quadratic
optimal control and its sub-optimal control, optimal control of discrete system and dynamic
programming.
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Review Questions

7.1. Please narrate the main thoughts of state feedback control system.
7.2. Please tell the specific application fields of output feedback control system.
7.3. What’s pole assignment? How do you think the pole assignment of control is realized?
7.4. Please tell us the difference between pole assignment and partial pole assignment.
7.5 What is the Diophantine equation? What case is it fit for?
7.6 Please say out your comprehension on Pontryagin’s minimum principle.
7.7 Please give out the performance functional of linear quadratic optimal control and

relative Hamilton function.
7.8 Please list out and explain the necessary condition that makes performance functional

get extreme value.
7.9 Please say the core principle of dynamic programming, and write out Bellman recursive

equation of dynamic programming.

Problems

Problem7.1.Please find the minimum of the following function which range of variable is
 62 .

  534 23  xxxxf
Problem7.2.Please find the minimum of the following function.

  534 23  xxxxf

which constraint condition is 0322  xx .
Problem7.3.Function   4532432 313221

2
3

2
2

2
1  xxxxxxxxxxf ; please find the

extreme value points of given function and minimum.

Problem7.4.Please find the optimal curve of functional     dtxtxxtxJJ  
1

0

2' 2 . Its

constraint conditions are   00 x and   11 x .

Problem7.5.The state equation of a given system is
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