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Objective: To develop a high-throughput sequencing panel for the diagnosis of developmental and epileptic encephalopathy in Tunisia and to clarify the fre- quency of disease-causing genes in this region.
Methods: We developed a custom panel for next-generation sequencing of the coding sequences of 116 genes in individuals with developmental and epileptic encephalopathy from the Tunisian population. Segregation analyses and in silico studies have been conducted to assess the identified variants' pathogenicity.
Results: We report 12 pathogenic variants in SCN1A, CHD2, CDKL5, SZT2,
KCNT1, GNAO1, PCDH19, MECP2, GRIN2A, and SYNGAP1 in patients with developmental and epileptic encephalopathy. Five of these variants are novel: “c.149delA, p.(Asn50MetfsTer26)” in CDKL5; “c.3616C > T, p.(Arg1206Ter)” in SZT2; “c.111_113del, p.(Leu39del)” in GNAO1; “c.1435G>C, p.(Asp479His)” in PCDH19; and “c.2143delC, p.(Arg716GlyfsTer10)” in SYNGAP1. Additionally, for four of our patients, the genetic result facilitated the choice of the appropriate treatment.
Significance: This is the first report of a custom gene panel to identify ge-
netic variants implicated in developmental and epileptic encephalopathy in the Tunisian population as well as the North African region (Tunisia, Egypt, Libya, Algeria, Morocco) with a diagnostic rate of 30%. This high-throughput sequenc- ing panel has considerably improved the rate of positive diagnosis of develop- mental and epileptic encephalopathy in the Tunisian population, which was less than 15% using Sanger sequencing. The benefit of genetic testing in these pa- tients was approved by both physicians and parents.
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1 [bookmark: 1__|__INTRODUCTION]|	INTRODUCTION 
Epilepsy is a common neurological disease with 50 mil- lion affected individuals worldwide. As a result, it is among the most frequent neurological diseases globally. Relying on the World Health Organization, approxi- mately three-quarters of them live in low- and middle- income countries. Additionally, the premature death risk in people with epilepsy amounts to three times higher than for the general population.1 Developmental and epileptic encephalopathy (DEE) corresponds to a heterogeneous group of epileptic syndromes marked by early-onset, refractory seizures that also take place within the framework of developmental regression.2 According to the ILAE classification of epileptic syn- dromes, DEE encompasses several clinically definable epilepsy syndromes including Dravet syndrome (DS), infantile epileptic spasms syndrome (IESS), Lennox- Gastaut syndrome (LGS), and epilepsy of infancy with migrating focal seizures (EIMFS).2–4 Etiologies of DEE are variable. With the advances in sequencing meth- ods, genetic etiologies become more and more frequent and reach more than 50% of patients with early-onset DEE.5 In Tunisia, DEE constitutes a significant burden for the family and the healthcare system. It represents 43% of the epileptic syndrome in the Sfax Department of Child Neurology. In Tunisia, as well as in North Africa, data are scarce regarding the genetic basis of epilepsy. In fact, in the whole African continent, only one study has recently been published. It was concerned with the development of a DEE panel in the South African re- gion.6 Therefore, exploration of the etiology of DEE and the early diagnosis of causal variants by next-generation sequencing (NGS) assist to a great extent in terms of al- leviating social and economic problems. Scrutinizing through literature, multiple research works tackled the use of gene panels in epilepsy with variable diagnostic yields.7 So far, this variability made it difficult to identify an appropriate gene pool whose screening might enable accurate diagnosis and generate higher diagnostic yields in people displaying heterogeneous epilepsy pheno- types. From this perspective, wide-ranging approaches, such as whole exome sequencing (WES) or whole ge- nome sequencing (WGS), are basically adopted as alter- native genetic testing methods. Yet, the interpretation of gene variants with WES and WGS is not only time-con- suming but also a more sophisticated task. Currently, panel-based sequencing is still preferred in certain clini- cal centers, owing to its depth of coverage, speed of data analysis as well as cost saving.8	Comment by LENOVO: Please add the reference.	Comment by LENOVO: The reference? Or this frequence is determined based on your study?
In our study, we built up a comprehensive NGS panel interrogating 116 genes implicated in DEE. The panel covered the coding exons and the exon-intron junctions,


[bookmark: _GoBack]providing a high-throughput assay. Our basic objective is to clarify the frequency of disease-causing genes among the Tunisian population.

2 [bookmark: 2__|__PATIENTS_AND_METHODS]|	PATIENTS AND METHODS 
2.1 [bookmark: 2.1__|__Subjects_and_sample_preparation]|	Subjects and sample preparation
We collected 40 Tunisian children from the region of Sfax and southern Tunisia. Recruitment of patients was under- taken between 2020 and 2022 in the Department of Child Neurology of Hedi Chaker Hospital in Sfax. All patients were examined and diagnosed by a pediatric neurologist. Clinical data, including age at the onset, frequency, and type of seizures, as well as the presence of developmental delay or regression, acquired or congenital microcephaly, abnor- mal movements or stereotypies, and dysmorphic syndrome, were analyzed. Seizure types and epileptic syndromes have been diagnosed and classified relying on International League Against Epilepsy classification.2–4
Whole blood was collected from all the patients. Samples from additional family members were invested whenever possible to conduct segregation analysis of the sequence variants identified in the index patient. We ex- tracted DNA from all samples through the use of the phe- nol-chloroform standard method.	Comment by LENOVO: Which type of tube did you use to collect the blood, EDTA (ethylenediaminetetraacetic acid tubes) or another type? What volume did you sample?

2.2 [bookmark: 2.2__|__Capture_design_and_targeted_next]|	Capture design and targeted next-generation sequencing
We designed a hybridization-based multi-disease gene panel using Design Studio which is a web application from Illumina to devise a custom target enrichment library design.Key Points
· This is the first report of a custom gene panel to identify genetic variants implicated in develop- mental and epileptic encephalopathy in North Africa.
· 12 pathogenic variants were reported for the first time in the Tunisian population.
· The high-throughput sequencing panel has considerably improved the rate of positive diag- nosis of developmental and epileptic encepha- lopathy in Tunisia.
· For four of our patients, the genetic result facil- itated the choice of the appropriate treatment.



The design rested on GRCh37/hg19 reference sequences, with target sources obtained from the RefSeq database. All coding exons in this custom design were targeted includ- ing 25 bp of the flanking intronic sequence of 116 genes. The criteria for including a gene on the panel were that it should have been reported more than once in patients with epilepsy. All selected genes are included in Table S1. Most of these genes have an autosomal dominant or an autosomal recessive inheritance mode (Figure S1). Libraries were pre- pared relying on the “Illumina DNA Prep with Enrichment sample preparation reference guide”. The libraries were se- quenced on the Miseq system (Illumina).	Comment by LENOVO: You mentioned figure S1, but we can't find the figure anywhere in the article. Please verify it.

2.3 [bookmark: 2.3__|__Bioinformatic_pipeline]|	Bioinformatic pipeline
We adjusted MiSeq Reporter software settings (Illumina) to generate VCF files for index reads. VarAFT was used for variant annotation and filtering.9 The mean sequenc- ing depth is 165× (Min = 109×, Max = 214×). Variants with minor allelic frequency (MAF) < 0.1% were re- tained. Nonsense variants and small deletions or inser- tions inducing a frameshift of the coding sequence were regarded as the most harmful, as they necessarily altered the amino-acid sequence of the protein. We also examined the pathogenicity of the different variants in accordance with ACMG (American College of Medical Genetics and Genomics) standards and guidelines.10 Variants were clas- sified into five types, namely “Benign,” “Likely Benign,” “Pathogenic,” “likely pathogenic,” and “Uncertain sig- nificance.” Moreover, AF in the genome Aggregation Database (gnomAD) (https://gnomad.broadinstitute. org/) was invested to assess the variant's frequency.
We estimated the pathogenicity of missense variants through the use of SIFT and PROVEAN algorithms.11 Additionally, we specified the pathogenicity of the sub- stitution variants by Mutation Taster.12 To check if the sites of the variants are conserved, we used PhyloP100way whose scores rely on many alignments of 99 vertebrate genome sequences to the human genome. The higher the score, the more conserved the site.

2.4 [bookmark: 2.4__|__Validation_by_Sanger_sequencing]|	Validation by Sanger sequencing
We analyzed variants suspected to be pathogenic using Sanger sequencing. We amplified DNA fragments in- volving the variants by PCR with specific primers and we sequenced them on both strands using the Big Dye
3.1 Terminator Sequencing Kit. We analyzed purified sequence products on a 3100 ABI instrument (Applied Biosystems). We conducted a segregation analysis in cases where DNA samples of relatives were obtainable.
3 [bookmark: 3__|__RESULTS]
|	RESULTS 
3.1 [bookmark: 3.1__|__Clinical_findings]|	Clinical findings
We collected 40 Tunisian children with DEE. Pathogenic variants were identified per patient and their respective clinical presentations are illustrated in Table 1.

3.2 [bookmark: 3.2__|__Genetic_findings]|	Genetic findings
A total of 12 variants were identified and predicted to be pathogenic or likely pathogenic according to ACMG clas- sification10 (Table S4) (Two frameshift, five missense, four nonsense, and one in-frame variants). The commonest gene in which positive findings were identified was SCN1A (3 patients). Additionally, variants were identified in CDKL5, GNAO1, KCNT1, CHD2, PCDH19, SZT2, MECP2, GRIN2A,
and SYNGAP1. Among these variants, five are novel and seven were previously reported in the literature. Table 2 shows the number of pathogenic variants detected in the study as well as the results of the software's predictions.


3.3 [bookmark: 3.3__|__Treatment_adaptations_offered_to]|	Treatment adaptations offered to patients after the genetic diagnosis
According to the World Health Organization, it is recorded that up to 70% of people affected with epilepsy can live seizure-free if they are properly diagnosed and treated.1 In the current study, 12 pathogenic or likely pathogenic vari- ants were identified. Identification of a specific underlying genetic variant can guide precision medicine in terms of preventing paradoxical aggravation of certain epilepsies. In fact, it is crucial to manage seizures carefully so as to shun disability and injuries and minimize the risk of life- threatening complications, such as sudden unexpected death in epilepsy and status epilepticus. In this study, four patients benefited from treatments after genetic diagno- sis. The ages of these patients in the study range from 4 to 12 years and the ages of the first symptoms range from 1.3 to 8 months (Table 1). As far as DS is concerned, its early suspicion by means of SCN1A loss of function variants' identification may be extremely beneficial. Sodium chan- nel-blocking drugs need to be avoided, as they may even aggravate the seizures or are likely to be ineffective.36,37 In such cases, alternative treatments involve benzodiaz- epines, valproate, stiripentol, cannabinoids, fenfluramine, and the ketogenic diet.37–41 For our patients (SEED.0009 and SEED.0198) carrying “c.3094G > T, p.(Glu1032Ter)” and “c.1837C > T, p.(Arg613Ter)” variants in SCN1A, these alternative treatments were prescribed. In this re- spect, it was reported that Levetiracetam corresponds to a


TABLE 1	Clinical features of the patients in the cohort.

	



Patient
	



Variant
	



Sex
	

Neurodevelopment history
	



Consanguinity
	



Family history
	

Age at seizure onset (month)
	

Age at the study (years)

	SEED.0009
	SCN1A: c.3094G > T
p.Glu1032Ter
	F
	Motor and cognitive delay
	No
	Sister: dysmorphic features
Congenital cardiopathy
	4
	4

	SEED.0020
	GNAO1:
c.111-113del p.Leu39del
	M
	Motor and cognitive delay
	No
	–
	1
	6

	SEED.0021
	CDKL5:
c.149delA p.Asn50MetfsTer26
	F
	Motor and cognitive delay
	Yes
	–
	1.3
	10

	SEED.0061
	KCNT1: c.2714G > A
p.Arg905Gln
	M
	Motor and cognitive delay
	No
	–
	11
	17

	SEED.0062
	CHD2: c.2698C > T
p.Arg900Ter
	F
	Motor and cognitive delay
	Yes
	Autism (cousin)
	38
	10

	SEED.0074
	PCDH19: c.1435G > C
p.Asp479His
	F
	Motor and cognitive delay
	No
	–
	8
	7

	SEED.0093
	SZT2: c.3616C > T
p.Arg1206Ter
	M
	Motor and cognitive delay
	Yes
	–
	2
	5

	SEED.0113
	MECP2: c.433C > T
p.Arg145Cys
	F
	Motor and cognitive delay
	No
	–
	18
	12

	SEED.0139
	SCN1A: c.4756G > A
p.Gly1586Arg
	M
	Motor and cognitive delay
	Yes
	–
	3
	19

	SEED.0151
	SYNGAP1:
c.2143delC p.Arg716GlyfsTer10
	F
	Motor and cognitive delay
	Yes
	Febrile seizures: mother's cousins
	16
	17

	SEED.0158
	GRIN2A: c.1510C > T
p.Arg504Trp
	F
	Motor and cognitive delay
	No
	–
	40
	11

	SEED.0198
	SCN1A: c.1837C > T
p.Arg613Ter
	F
	Motor and cognitive delay
	No
	–
	6
	12


Abbreviations: DS, Dravet syndrome; EIDEE, early infantile developmental and epileptic encephalopathy; F, female; IESS, infantile epileptic spasm syndrome; LGS, Lennox-Gastaut syndrome; M, male; PCDH19-Clustering Epilepsy, procadherin 19 clustering epilepsy; SHE, sleep-related hypermotor epilepsy.


powerful and reliable therapy for females with PCDH19- Girls clustering epilepsy and has to be considered early in the management of the highly refractory clusters of sei- zures that characterize this genetic disease.42 Moreover, Ganaxolone was reported to significantly reduce the

frequency of CDKL5 Deficiency Disorder-associated sei- zures.43 For these reasons, SEED.0074 and SEED.0021 benefited from Levetiracetam and Ganaxolone, respec- tively. Now, we are monitoring the effect of treatments prescribed to patients.
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Interictal EEG
	

Seizure evolution
	



Other clinical features
	

Epileptic syndrome
	



Brain MRI
	Treatment adaptations offered after the genetic diagnosis

	Febrile Focal clonic
	Normal
	Febrile status epilepticus
	Intellectual deficiency with poor expressive language
	DS
	Normal
	Benzodiazepines, valproate, cannabinoids

	Tonic generalized
	Normal
	Focal clonic
	Severe intellectual deficiency
	EIDEE
	Cortical
atrophy
	–

	Myoclonus
generalized
	Multifocal
discharges
	Spasms
	Severe intellectual deficiency
	IESS
	Normal
	Ganaxolone

	Tonic
	Multifocal
discharges
	Persisting
	Severe intellectual deficiency with autism spectrum disorder
	SHE
	Normal
	–

	Tonic
	Fast rhythms/ spike-waves
	No seizures
	Severe intellectual deficiency
	LGS
	Normal
	–

	Tonic (clusters)
	Normal
	Improvement
	Severe intellectual deficiency with autism spectrum disorder
	PCDH19-
clustering epilepsy
	Normal
	Levetiracetam

	Tonic/clonic
	Multifocal
discharges
	Persisting
	-Severe intellectual deficiency
-Dysmorphic features
-Global hypotonia, non-ambulatory
	Infantile DEE
	Not done
	–

	Generalized tonic during sleep
	Centro-temporal spikes
	Persisting
	-Severe intellectual deficiency with autism spectrum disorder
-Hands washing
-Jovial mood
	Infantile DEE
	Normal
	–

	Clonic
	Normal
	Persisting
	Severe intellectual deficiency
	DEE with
fever- sensitive epilepsy
	Hippocampal dysgeusia
	–

	Febrile seizures Typical absences Focal tonic
	Multifocal spikes
	Improved under Lamotrigine
	Severe intellectual deficiency
	Infantile DEE
	Normal
	–

	Generalized tonic
	Centro-temporal spikes activated with sleep
	Persisting
	Mild intellectual deficiency
	DEE-SWAS
	Normal
	–

	Clonic/tonic/	Normal	Febrile and	Mild intellectual	DS	Normal	Benzodiazepines, myoclonic			afebrile		deficiency with				valproate,
febrile	learning difficulties	cannabinoids







4 [bookmark: 4__|__DISCUSSION]|	DISCUSSION 
In Tunisia, the analysis of DEE remains confined to a few cases based on candidate gene approach or clinical exome sequencing instead of targeted sequencing.44–53 Yet, in

terms of DEE for which many candidate genes were re- ported, investing in targeted sequencing may be an op- timal method for choice as this approach facilitates the analysis of generated sequencing data, reduces sequenc- ing cost, increases sequencing depth, and does not include

TABLE 2	Genetic characteristic of variants identified in this study.

	

Patient
	

Gene
	

Transcript
	

Exon
	

cDNA
	

Variant
	

Genotype
	

Variant type

	SEED.0009
	SCN1A
	NM_001353948.2
	17
	c.3094G > T
	p.Glu1032Ter
	Het
	Nonsense

	SEED.0139
	
	NM_001353948.2
	26
	c.4756G > A
	p.Gly1586Arg
	Het
	Missense

	SEED.0198
	
	NM_001353948.2
	12
	c.1837C > T
	p.Arg613Ter
	Het
	Nonsense






	SEED.0021
	CDKL5
	NM_003159.2
	4
	c.149delA
	p.Asn50MetfsTer26
	Het
	Frameshift

	SEED.0020
	GNAO1
	NM_138736.3
	1
	c.111_113del
	p.Leu39del
	Het
	In-frame

	SEED.0061
	KCNT1
	NM_001272003.2
	24
	c.2714G > A
	p.Arg905Gln
	Het
	Missense

	SEED.0062
	CHD2
	NM_001271.4
	21
	c.2698C > T
	p.Arg900Ter
	Het
	Nonsense

	SEED.0074
	PCDH19
	NM_001105243.2
	1
	c.1435G > C
	p.Asp479His
	Het
	Missense

	SEED.0093
	SZT2
	NM_015284.4
	25
	c.3616C > T
	p.Arg1206Ter
	Hom
	Nonsense

	SEED.0113
	MECP2
	NM_001110792
	3
	c.433C > T
	p.Arg145Cys
	Het
	Missense

	SEED.0151
	SYNGAP1
	NM_001130066
	13
	c.2143delC
	p.Arg716GlyfsTer10
	Het
	Frameshift

	SEED.0158
	GRIN2A
	NM_001134407
	7
	c.1510C > T
	p.Arg504Trp
	Het
	Missense


Abbreviations: D, damaging; DC, disease causing; Het, heterozygous; Hom, homozygous; LP, likely pathogenic; P, pathogenic; S, supporting; U, uncertain; US, uncertain significance; VNF, variant not found; VS, very strong.


any ethical concerns in terms of the return results. This report corresponds to the first one tackling a custom gene panel to identify genetic variants implicated in DEE in the Tunisian population with a positive diagnostic rate of 30% (12/40). This diagnosis rate was less than 15% before the development of the panel.


4.1 [bookmark: 4.1__|__Expanding_the_spectrum_of_DEE_va]|	Expanding the spectrum of DEE variants in Tunisian patients
In this research work, we successfully identified five novel pathogenic variants and seven preceding reported patho- genic variants in the Tunisian population for the first time.
Variants in SCN1A were reported previously in Tunisian patients with DS or generalized epilepsy with febrile seizures plus (GEFS+).47,49,50 However, this is the first report of “p.(Glu1032Ter),” “p.(Arg613Ter),” and

“p.(Gly1586Arg)” variants in Tunisia. According to the literature, the “p.(Glu1032Ter)” variant in SCN1A is re- ported twice in DS patients,13,14 and “p.(Arg613Ter)” vari- ant is reported several times in patients with DS17,18,20–22,54 (Table S2). Our patients (SEED.0009 and SEED.0198) present also a DS (Table S2), which goes in good consis- tency with previous studies showing that this syndrome is associated with loss of function variants.55 The “p.(Gl- y1586Arg)” variant was previously reported twice in an Italian and a Turkish patient with DS and unclassified epilepsy, respectively15,16 (Table S2). However, our patient presents DEE with fever-sensitive epilepsy.
Additionally, the “p.(Arg905Gln)” variant is detected in KCNT1. This variant was recorded previously in affected persons with DEE,23,30 childhood-onset epilepsy,14,29 EIMFS with or without IESS,24,26–28,31,32 autosomal domi- nant nocturnal frontal lobe epilepsy (ADNFLE),56 autoso- mal dominant forms of sleep-related hypermotor epilepsy



	

[bookmark: _bookmark4]Transmission
	
Mutation taster
	

SIFT
	

Provean
	AF in gnomAD exomes v 2.1.1 (global)
	PhyloP100 conservation score
	
Reported variant/ reference
	
ACMG
classification

	Not available
	DC
	–
	–
	VNF
	4.88
	[13]
[14]
	LP

	De Novo
	DC
	D
	D
	VNF
	3.796
	[15]
[16]
	LP

	Not available
	-
	–
	–
	VNF
	0.45
	[17]
[18]
[19]
[20]
[21]
[22]
	P

	De Novo
	–
	–
	–
	VNF
	9.343
	Novel
	LP

	Not available
	–
	–
	–
	VNF
	7.53
	Novel
	LP

	De Novo
	DC
	D
	D
	VNF
	9.577
	[14,23]
[24,25]
[26,27]
[28,29]
[30,31]
[32,33]
	LP

	De Novo
	U
	–
	–
	VNF
	3.97
	Novel
	P

	Maternal
	DC
	D
	D
	VNF
	7.82
	Novel
	P

	Inherited from parents
	DC
	–
	–
	0.0000279
	2.57
	Novel
	LP

	De Novo
	U
	D
	D
	VNF
	9.29
	Reported 141 times (https://varsome. com)
	P

	De Novo
	–
	–
	–
	VNF
	5.61
	Novel
	LP

	De Novo
	B
	D
	D
	VNF
	2.59
	[34,35]
	P







(ADSHE),25,33 and early-onset epileptic encephalopathy (EOEE)26 in many populations. Referring to our patient (SEED.0061), the “p.(Arg905Gln)” variant is responsible for sleep-related hypermotor epilepsy (Table S2). The co- existence of different phenotypes for the same genetic vari- ation is indicative that possibly genetic or environmental modifiers exist, which suggests the need for extended re- search into gene variants.
We equally identified a truncating variant “p.(Arg900Ter)” in CHD2 causing LGS in the patient. This variant has never been described in the literature but it has been reported in the ClinVar database as being involved in DEE 94. So far, according to the Human Gene Mutation Database, 86 disease-causing variants have been reported in CHD2. The described patients presented epileptic en- cephalopathy, intellectual disability ranging in severity, autism spectrum disorder, myoclonic seizures, status epi- lepticus, and ataxia.57 The majority of pathogenic variants

are truncating (>72%).58 However, in spite of the high number of previously reported CHD2 pathogenic or likely pathogenic variants, no clear genotype-phenotype correla- tion was found. Our study characterizes the tenth patient worldwide carrying a variant in CHD2 with LGS as a phe- notype.58,59 The identification of variants implicated in the same phenotype can help find a correlation between geno- type and phenotype in the future.
The frameshift variant “p.(Asn50MetfsTer26)” was not previously reported in CDKL5. So far, more than 265 variants in this gene have been reported.60 As far as we know, we judge that our novel frameshift variation corre- sponds to the second frameshift CDKL5 variant recorded in Tunisian patients after the “p.(Glu930GlyfsTer9)”.44 In this population, six other variants are identified at the level of this gene which all correspond to missense vari- ants.45 The identified variant in this study, as well as all previously reported variants in CDKL5 in Tunisia, were


associated with IESS. Our data offer soundproof and more comprehensive information to confirm that CDKL5 is a potential gene for IESS in our population.
The nonsense variant “p.(Arg1206Ter)” in SZT2 was detected in a homozygous state in our patient from a con- sanguineous family. This variant has not been previously reported in the homozygous state in control databases. Our study was conducted on the first set of siblings with ho- mozygosity for the “p.(Arg1206Ter)” variant in SZT2. This result further indicates biallelic variants in this gene as a cause of DEE. According to the literature, only 24 patients carrying variants in SZT2 have been reported with a wide phenotypic spectrum from mild intellectual disability with- out epilepsy to DEE.61 Other relevant characteristics refer to such macrocephaly and radiological findings as neuro- nal migration disorders and corpus callosum abnormali- ties, which might refer to the hyperactivation of mTORC1 signaling.61 Though the genotype-phenotype correlation in SZT2 variants remains ambiguous, frameshift variants proved to result in hyperactivation of mTORC1 signal- ing.62–64 The identification of a homozygous variation in a consanguineous family reveals the role of inbreeding in the onset of autosomal recessive DEE. A study conducted on a non-consanguineous Caucasian population revealed a high contribution of recessive inheritance in DEE but with compound heterozygous variants.65 In our study, de- spite the consanguinity, we have only one patient with au- tosomal recessive inheritance. It is possible that variations which are not covered with our panel or copy number vari- ations are responsible for an autosomal recessive DEE in negative patients.
The detected in-frame variant in GNAO1 “p.(Leu- 39del)” was classified as “likely pathogenic” referring to ACMG and was not found in control population da- tabases. Furthermore, leucine at position 39 was highly conserved between species with a PhyloP100 conservation score equal to 7.53. So far, 50 GNAO1 variants have been found in patients with movement disorders and epilep- tic encephalopathy, where three variants are in-frame: “p.(Ala301del),” “p.(Ala338del),” and “p.(Ile344del),”66 These three reported patients did not present epilepsy or presented a single seizure, and they all share problems in motor development, with normal EEG findings, with or without intellectual disability.67,68 Our patient SEED.0020 presents similar clinical findings. In fact, epileptic seizures appear notably at the age of 1 month. Still, these seizures disappear completely at the age of 2 years and 9 months and the patient presents intellectual deficiency, problems in motor development as well as normal EEG findings at this age. A second variant “p.(Leu23Pro)” was reported previously in the same domain containing the p.Leu39del variant (N-terminus domain, prior to the first G-motif), in a patient with the same phenotype69 (Table S3).



Furthermore, the “p.(Asp479His)” in PCDH19 is a newly discovered variant that proves to be severe. This novel variant is located in the fifth cadherin domain of the PCDH19 protein. This domain contains six reported mis- sense variants involved in epilepsy19,70–73 (Table S3). An al- ternative variant at the same position “p.(Asp479Asn)” was classified as “likely pathogenic” by ClinVar. The affected mother possessed also the variant in the heterozygous state. The presence of variants with maternal inheritance in PCDH19 was described four times in state of art works.74–76 Moreover, it was emphasized that variants in PCDH19 are associated with seizures occurring in clusters, provoked by fever with cognitive impairment.77 Our patient SEED.0074 presents also this clinical phenotype (Table 1).
A previously reported variant p.(Arg504Trp) was de- tected in GRIN2A34,35 in a patient presenting DEE with Spike-Wave-Activation in Sleep (SWAS). The same variant was reported in patients with similar phenotypes present- ing Landau-Kleffner syndrome (LKS) or epileptic enceph- alopathy with continuous spike-and-wave during sleep (CSWS) and attention deficit and hyperactivity disorder (ADHD). However, this is the first report of GRIN2A vari- ants in the Tunisian population.
According to the varsome database (https://varsome. com), the p.(Arg145Cys) missense variant in MECP2 is re- ported more than 140 times in the literature. This variant is present in a hot spot region78 and classified as Pathogenic by ClinVar and UniProt. Additionally, there are 4 alterna- tive variants in the same position ((p.(Arg145Lys); p.(Ar- g145Leu); p.(Arg145His); and p.(Arg145Gly)), classified as “Pathogenic” by ClinVar and implicated in Rett syndrome or intellectual developmental disorders. In Tunisia, other vari- ants were reported in MECP2 in patients with Rett syndrome, but this is the first report of p.(Arg145Cys) variant.79–87
Additionally, we identified the novel frameshift variant p.(Arg716GlyfsTer10) in SYNGAP1. Approximately 200 cases were reported worldwide, and most of these patients are from Europe.88 The phenotype detected in our patient is in good agreement with previous studies showing that vari- ants in SYNGAP1 are responsible for a clinical syndrome characterized by intellectual disability and epilepsy.89 This is the first report of a variant in this gene on the African continent. Therefore, the SYNGAP1 gene should be ana- lyzed in the future in patients with this syndrome.


4.2 [bookmark: 4.2__|__Significance_of_genetic_studies_]|	Significance of genetic studies in different populations
for the assessment of population-based disease-causing epilepsy genes
Since 2014, several studies in various populations in America and Europe have used targeted NGS-based











[bookmark: _bookmark5]TABLE 3	Studies using gene panels for the diagnosis of DEE.
	

Population's origin
	
Number of tested individuals
	
Number of screened genes
	Diagnosis rate (%) (pathogenic or likely pathogenic variants)
	

Most frequently affected genes
	

Reference

	United States
	13
	38–53
	46.2
	PCDH19, SCN1A, SLC2A1, SPTAN1, SLC9A6, EFHC
	[91]

	Denmark, Estonia, the UK, Argentina, and Pakistan
	46
	216
	23
	SCN1A, CDKL5, GABRA1, GABRB3, KCNQ2, SCN2A, SCN8A, SLC2A1, STXBP1
	[13]

	United States
	339
	110
	18
	TSC2, SCN1A, KCNQ2, CDKL5, SCN2A, SCN8A, SCN1B,
	[92]


STXBP1, TPP1, PCDH19, CACNA1A, GABRA1, GRIN2A, SLC2A1
South Korea
74
172
37.8
SXTBP1, CDKL5, KCNQ2, SCN1A, SYNGAP1, GNAO1, KCNT1
[93]


Korea	116	40	34.5	SCN1A, PRRT2, ARX, SCN2A, KCNQ2, PCDH19, STXBP1,
DEPDC5, SCN8A

[94]


Denmark
200
45–580
23
SCN1A, KCNT1, STXBP1, SLC2A1, ATP6A1V, HNRNPU, MEF2C, IRF2BPL
[14]


Germany	91	5–434	18	SCN1A, TSC1, SCN8A, SYNGAP1, CPT2, KCNB1, PCDH19,
KCNQ2, CHD2, CACNA1A, STXBP1

[95]

|

 Turkey
80
110
36.25
TSC2, TSC1, KCNQ2, AMT, CACNA1H, KCNT1, SCN1A, GRIN2A, CNTNAP2, GLDC, MECP2, ASAH1
[16]
South Africa
41
308
43.9
SCN1A, KANSL1, KCNQ2, CDKL5, IQSEC2, MC1A, STXBP1
[6]
Tunisia
40
116
30
SCN1A, CHD2, CDKL5, SZT2, KCNT1, GNAO1, PCDH19,
Present study
GRIN2A, MECP2, SYNGAP1






epilepsy gene panels to identify the responsible genes for DEE. These panels may include between 5 and 580 genes, with a diagnostic yield ranging between 18% and 46% (Table 3). In Africa, only one study has recently been published which was concerned with the South African population.6 However, in North Africa (Tunisia, Egypt, Libya, Algeria, Morocco), no study on this issue has been undertaken before. In the Arabic countries, only one study was published in the Saudi Arabia region using WES/WGS sequencing rather than panels.90 From this perspective, this is the first study that uses a personalized panel of high-throughput sequencing in the Tunisian as well as the North African region with a diagnosis rate of 30% (Table 3). In our study, we specified Pathogenic or likely pathogenic variants in 10 genes (SCN1A, CHD2, CDKL5,  SZT2,  KCNT1,  GNAO1,  PCDH19,  MECP2,
GRIN2A, and SYNGAP1) involved in DEE, and SCN1A seems to be the most frequently affected gene in Tunisia (Table 2).

5 [bookmark: 5__|__CONCLUSIONS]|	CONCLUSIONS 
This study allows a deeper and better insight into the un- derlying causative genes and variants of DEE in Tunisian children. The 30% diagnostic yield goes in good conform- ity with previously reported international pediatric co- horts. Gene-directed therapies will be further enhanced in the future in a way that the management of all patients with DEE would be highly facilitated.
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